
1 
 

The application of decision support tools and the influence of local data 1 

in prioritizing barrier removal in lower Michigan, USA  2 

Hsien-Yung Lin1*, Kelly Robinson1, Austin Milt 2, Lisa Walter3 3 

1Quantitative Fisheries Center, Department of Fisheries and Wildlife, Michigan State 4 

University, East Lansing, MI 48824, USA (HYL: hylin0625@gmail.com; KR: 5 

kfrobins@msu.edu); 2Center for Limnology, College of Letters and Science, University of 6 

Wisconsin-Madison, Madison, WI 53706, USA (AM: austin.w.milt@gmail.com); 3Great 7 

Lakes Fishery Commission, Ann Arbor, MI 48105, USA (LW: lwalter@glfc.org) 8 

*Corresponding author: hylin0625@gmail.com, phone number: +1 517 488 6554 9 

Declarations of interest: none 10 

Author contributions 11 

K.R. and L.W. conceived of the main idea. H.Y.L. developed the scenarios for analysis. H.Y.L. 12 

and A.M. performed the computations and analysis. H.Y.L. took the lead in writing the 13 

manuscript. All authors helped shape this study and contributed essential components during 14 

the preparation of this manuscript.   15 

mailto:hylin0625@gmail.com
mailto:hylin0625@gmail.com


2 
 

Abstract  16 

Web-based decision support tools (DSTs) can be useful to facilitate decision-making 17 

processes for managing complex natural resource systems. However, the alignment of DSTs 18 

with the objectives in governmental policies or management plans and the influence of limited 19 

local data on the outputs of these tools may reduce the use of DSTs by decision makers. In this 20 

study, we examined the outcomes of web-based DSTs when different types of local data were 21 

incorporated and demonstrated a way to incorporate outputs from multiple DSTs or local 22 

inventories to benefit barrier removal decisions. Restoring habitat connectivity in rivers in 23 

northwest lower Michigan, USA, was used as a case study due to the abundance of local 24 

inventory data and web-based DSTs. We found that, when compared to prioritizations made 25 

using local data, some DSTs could produce similar outcomes (in barriers selected, cost, and 26 

the benefit for migratory fish) with limited data, but the trade-offs among users’ objectives 27 

might influence the cost and effectiveness of DSTs’ outputs. Improving the ability of DSTs to 28 

incorporate objectives consistent with policy and stakeholders’ values (e.g., restore certain 29 

species or sedimentation control) across management scales can help close the gap between 30 

tool recommendations and management decisions while making the barrier removal 31 

prioritization process transparent and efficient. 32 

 33 

Keywords: decision support tools, restoring connectivity, barrier removal, prioritization, Great 34 

Lakes, sea lamprey   35 
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Introduction 36 

Tools are needed to facilitate decision making for managing complex natural systems 37 

(Matthies et al., 2007; McIntosh et al., 2011). In river restoration and watershed management, 38 

removal of barriers to restore river connectivity has become a major focus (Kemp and 39 

O’Hanley, 2010; McKay et al., 2016) because connectivity loss and habitat fragmentation 40 

have threatened biodiversity and ecosystem services (Dudgeon et al., 2006; Saunders et al., 41 

2015). Although removal of barriers, such as dams and road-stream crossings, can help to 42 

restore native fish populations (Bednarek, 2001; Evans et al., 2015), the decision of which 43 

barrier(s) to remove can be difficult for many reasons, including the cost and effort required 44 

(Neeson et al., 2015; Zheng and Hobbs, 2013). In addition, removing barriers may have 45 

negative effects on local ecosystems by increasing accessibility to habitats for invasive species 46 

(Hermoso et al., 2015; McLaughlin et al., 2013). These projects usually require considering 47 

multiple and sometimes competing values and objectives from managers and stakeholders 48 

(McKay et al., 2016; Zheng and Hobbs, 2013). Tools that can incorporate both benefit and 49 

costs of removal projects, reveal trade-offs among alternatives, and visualize the results can 50 

facilitate the decision-making process in prioritizing barrier removals (McKay et al., 2016). 51 

 52 

Decision support tools (DSTs) are interactive, computer-based platforms that can be used to 53 

help facilitate environmental decision making (Gibson et al., 2017; McIntosh et al., 2011; 54 

Power and Sharda, 2009). Many of these tools are web-based, allowing for users to overcome 55 

the constraint of limited local resources (e.g., time, data, and communication) and increasing 56 

the accessibility to managers and stakeholders ("web-based DSTs": Choi et al., 2005; Shim et 57 

al., 2002). For example, web-based DSTs have been developed to provide biological, 58 

environmental, and socio-economic data, aquatic connectivity estimates, and quantitative 59 

models to support barrier removal prioritization across the US (e.g., for the Northeast, 60 
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Chesapeake Bay, Southeast, and Great Lakes regions, see McKay et al., 2016). Databases 61 

included in these tools can help decision-makers gather necessary information, and 62 

quantitative models can be used to predict possible outcome scenarios for a decision point 63 

(McKay et al., 2016). Therefore, use of DSTs may improve the transparency of 64 

decision-making because the tools can provide evidence-based explanations, along with visual 65 

aids, to support decisions, and all users can examine the input data, adjust the weights, and 66 

reproduce the decision procedure and results (McIntosh et al., 2011). 67 

 68 

Despite advantages of using DSTs, many of these tools are underused by managers and 69 

decision makers. Often developers and end-users of these tools differ in the required 70 

timeframes and information, expectations, background knowledge, training, and skill sets 71 

(Gibson et al., 2017; McIntosh et al., 2011). Some managers may not be aware of existing 72 

tools, are wary of real or perceived tool limitations, or are uncomfortable with the tool’s 73 

assumptions (Addison et al., 2013; van Delden et al., 2011). For example, while many 74 

web-based DSTs have been developed to assist managers in selecting the most beneficial sites 75 

for connectivity restoration in the Great Lakes Basin (McKay et al., 2016; Moody et al., 2017), 76 

most of them have been neither mentioned nor applied in local-scale watershed management 77 

plans such as Nonpoint Source program approved watershed management plans in Michigan, 78 

USA. Instead, managers often rely on inventory data collected by local watershed groups and 79 

management agencies to prioritize barrier removal or mitigation projects (Shook, D. [Grand 80 

Traverse Band of Ottawa and Chippewa Indians] and Beyer, A. [Conservation Resource 81 

Alliance], personal communication, 2017), or select these projects opportunistically without 82 

much, if any, prioritization. 83 

 84 
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How DSTs perform given limited data is one of the key factors that influences the use of these 85 

tools by managers and decision makers (Gibson et al., 2017). Local inventory data are quite 86 

sparse in many regions and can be time-consuming and expensive to collect, and the use of 87 

these data may not necessarily change management actions or improve conservation outcomes. 88 

For example, the return on investment of survey data decreases rapidly in the conservation of 89 

sugarbushes (Proteaceae) in South Africa (Grantham et al., 2008). Similarly, collecting new 90 

data about population growth was shown to provide little improvement to koala 91 

(Phascolarctos cinereus) management in south-east Queensland, Australia (Maxwell et al., 92 

2015). Therefore, comparing the outputs of DSTs given different levels of availability of local 93 

data and examining the influence of various types of data on decisions could be valuable. If 94 

the value of this local information is low for the decision at hand, the costs related to data 95 

collection could be better allocated to other management activities. Furthermore, reviewing 96 

data and functions across DSTs and demonstrating possible ways to integrate multiple tools 97 

for certain management interests can help managers and decision-makers quickly select 98 

suitable tools for their needs and objectives (e.g., an example in Tetzlaff et al., 2013 and 99 

Center for Ocean Solutions, 2011). The use of local data extracted from multiple data-driven 100 

DSTs provides an opportunity to examine the influence of different levels of data availability 101 

on the outputs of model-driven DSTs. 102 

 103 

This study aims to enhance the connection between DST development and management 104 

decisions by addressing two main issues that influence the use of DSTs by decision makers: (1) 105 

the alignment of DSTs with the objectives and context of policies or management plans, and 106 

(2) the performance of DSTs with limited or missing data (Gibson et al., 2017). To accomplish 107 

these goals, we conducted a study in which we: (1) reviewed management plans and available 108 

web-based DSTs for a case study; (2) examined ways to integrate data and functions across 109 
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DSTs and created a guide for DST selection according to management context; (3) compared 110 

and examined the outputs of a model-driven DST, Fishwerks, given different local data 111 

availability; and finally, (4) suggested possible improvements for existing DSTs. The case 112 

study was conducted in northwestern lower Michigan (the Fruitbelt region), USA, because this 113 

region is included in a number of existing web-based DSTs (see McKay et al., 2016 and 114 

Moody et al., 2017) and has relatively comprehensive local inventory data on road-stream 115 

crossings collected by local agencies and non-profits that is publicly available on the River 116 

Restoration in Northern Michigan website 117 

(http://www.northernmichiganstreams.org/rsxinfo.asp). The abundance of existing DSTs and 118 

local data provide a unique opportunity to study the influence of data availability on DST 119 

outputs and explore the complementarity among DSTs. We also evaluated the influence of 120 

information for contradictory objectives (i.e., remove barriers for native species vs. keep 121 

barriers for nuisance species). Furthermore, our results can be used to inform managers in 122 

regions with limited local inventory data about the sensitivity of model-driven DSTs to local 123 

information and the use of data-driven DSTs. 124 

 125 

Methods 126 

Case study in northwest lower Michigan 127 

Northwest lower Michigan (Fruitbelt region), USA, is characterized by groundwater-fed 128 

cold-water streams that provide critical habitat for native and sport fish populations, such as 129 

white sucker (Catostomus commersonii), northern pike (Esox lucius), walleye (Sander 130 

vitreus), lake sturgeon (Acipenser fulvescens), and salmon and trout (Salmonidae) (Lyons et 131 

al., 2009; Peterson et al., 2007; Zorn et al., 2008). This region also supports diverse and 132 

productive agriculture, such as blueberry, cherry, apple, and grape production, and forestry. 133 

http://www.northernmichiganstreams.org/rsxinfo.asp
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Local watershed management plans have been developed and implemented under the 134 

Nonpoint Source (NPS) grant program, which is administered by Michigan Department of 135 

Environmental Quality, to protect and restore watersheds in the Fruitbelt region and 136 

throughout the state of Michigan (NPS Approved and Pending Watershed Plans, Michigan). 137 

As with much of the Great Lakes region, connectivity loss and habitat fragmentation by 138 

anthropogenic barriers, such as dams and road-stream crossings, have negatively affected fish 139 

populations by blocking migration pathways, reducing the accessibility of critical habitats, 140 

degrading habitat quality, and hindering the free movement of materials and energy in the 141 

ecosystem (Dodd et al., 2003; Januchowski-Hartley et al., 2013; Porto et al., 1999). Since 142 

2015, federal, state, tribal, municipal, and non-government partners have worked together as 143 

the Tribal Stream and Michigan Fruitbelt Collaborative to reduce sedimentation and improve 144 

aquatic organism passage in the region. Typically, projects that focus on culvert replacement 145 

are prioritized after structures are assessed using the Great Lakes Road Stream Crossing 146 

Inventory Instructions protocol (2011). Although there is continued interest in restoring 147 

connectivity through barrier removal projects across the Great Lakes Basin, evaluating the 148 

complex trade-offs between ecological and societal values in the decision-making process is 149 

challenging. For any single barrier, the potential ecological consequences of removal could be 150 

both positive (via native species and nutrient/energy flows; Dudgeon et al., 2006; Maavara et 151 

al., 2015) and negative (via invaders and pathogens; McLaughlin et al., 2013 and Zheng and 152 

Hobbs, 2013). Furthermore, decision makers must also consider implications for human safety 153 

and recreation (Moody et al. 2017). In the Great Lakes Basin, more than 60 barriers have been 154 

constructed or modified to suppress the spread of sea lamprey (Petromyzon marinus), and 155 

hundreds built for other purposes function as blocking structures critical to controlling sea 156 

lamprey (Lavis et al., 2003). Removing barriers may increase sea lamprey populations if 157 

suitable spawning and rearing habitats exist upstream of barriers, and the Great Lakes Fishery 158 

Commission anticipates that newly infested habitat would require an increased budget to 159 
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retain sea lamprey control in Great Lakes tributaries (Jensen and Jones, 2017; Mullett and 160 

Sullivan, 2016). 161 

 162 

Policy and management plans review  163 

We reviewed one state act (Michigan Natural Resources and Environmental Protection Act 164 

1994 PA 451) and 13 local watershed management plans (Betsie River, Lake Charlevoix, 165 

Cheboygan River/Lower Black River, Glen Lake/Crystal River, Grand Traverse Bay, Greater 166 

Bear, Lake Leelanau, Little Traverse Bay, Little Manistee, Long Lake, Mullett Lake, Platte 167 

River, Upper Manistee River; Fig. 1) to identify objectives relevant to barrier removal for our 168 

case study. Surface waters of the State of Michigan are protected by Water Quality Standards 169 

for specific designated uses, such as supporting cold- or warm-water fisheries, indigenous 170 

aquatic life, and wildlife (R323.1100 of Part 4, Part 31 of the Michigan Natural Resources and 171 

Environmental Protection Act, 1994 PA 451). Because most socio-economically and 172 

ecologically important fish species are affected by barriers in the Fruitbelt region 173 

(Januchowski-Hartley et al., 2013; Moody et al., 2017), barrier removal projects can be used 174 

to help achieve some designated uses in the Environmental Protection Act. All 13 watershed 175 

management plans within the study area recognized road-stream crossings as critical sites for 176 

sedimentation control, and most plans mentioned the effects of poorly-designed road-stream 177 

crossings and dams on river connectivity. According to the Great Lakes Road Stream Crossing 178 

Inventory Instructions protocol (USFS 2011), both erosion and fish passage issues can be used 179 

to prioritize road-stream crossings for upgrade. Besides these management plans, several 180 

barriers are operated by the US Fish and Wildlife Service (USFWS) and Fisheries and Oceans 181 

Canada (DFO), as contract agents of the Great Lakes Fishery Commission, to control sea 182 

lamprey populations. Based on our findings, we included objectives (and measures of these 183 
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objectives) related to cold- and warm-water fish, indigenous aquatic species and wildlife, 184 

invasive sea lamprey, barrier passability, and erosion when considering barrier prioritization. 185 

 186 

Decision support tools selection 187 

Eight web-based DSTs were identified from the literature (McKay et al., 2016; Moody et al., 188 

2017) and environmental management websites (see Table 1), in which they provided: (1) 189 

policy and management plan-relevant data and spatial information on barriers; and/or (2) 190 

optimization models, for prioritizing barrier removal in the Fruitbelt region. The High Impact 191 

Targeting tool focuses on sedimentation; FishVis, FishTail, and the Fish Habitat Decision 192 

Support Tool focus on biological, environmental, and some socio-economic factors; and the 193 

Sea Lamprey Control Map, Geospatial Fisheries Information network, Fishwerks and 194 

OptiPass focus more directly on river connectivity (Table 1). Among all DSTs evaluated, only 195 

Fishwerks and OptiPass had optimization modelling functions for prioritizing barrier removal 196 

projects, and only Fishwerks could perform optimization modelling and display the results 197 

online without input data from users (Table 1). Seven out of eight DSTs are region-specific 198 

tools that cover a geological range from the entire US, part of the US, to part of Canada. 199 

OptiPass is the only tool that can be applied to any watershed, depending on input data (Table 200 

1). We built a decision guide to facilitate DST selection by decision makers according to 201 

policy context and the functionality of DSTs (Fig. 2). One model-driven tool, Fishwerks was 202 

chosen for the following scenario analyses to examine the outcomes of DSTs with limited 203 

data. Fishwerks was used because less user-provided input data are required, and it is built 204 

specifically for the Great Lakes basin with the same basic optimization algorithm (mixed 205 

integer linear programming) as in OptiPass. Other data-driven tools, including FishVis, 206 

FishTail, and Sea Lamprey Control Map were then used as sources of different local data, as 207 

described in the next section.  208 



10 
 

 209 



11 
 

Decision support tool evaluation 210 

We examined outcomes of barrier prioritization under different local data availability by 211 

comparing results (effectiveness and cost) among a set of simulated scenarios (Table 2). 212 

Scenarios were selected according to the objectives from reviewed policy and management 213 

plans, such as prioritizing barrier removals to benefit cold- and warm-water fishes and other 214 

indigenous aquatic species while considering invasive sea lamprey control. Specifically, 215 

barriers were prioritized to maximize habitat connections for fish with different thermal 216 

preferences (i.e., cool-, cold-, and warm-water fish; extracted from FishVis), or to maximize 217 

the connections between riverine habitats with high water quality or low land-based 218 

disturbances (extracted from FishTail). We also considered the cost of applying lampricide to 219 

kill sea lamprey larvae in newly-opened streams or keeping all barriers that are important for 220 

sea lamprey control intact. The estimated annual lampricide application cost for every stream 221 

reach was extracted from Fishwerks (Table 2), and was estimated usng variables including 222 

lake basins, reach length, and watershed drainage area to incorporate both costs for chemical 223 

lampricide and staff time (Steeves, M. [Fisheries and Oceans Canada] personal 224 

communication, 2015). We chose to focus on sea lamprey invasions because many 225 

stakeholders in the region consider this as a significant negative effect of terminal barrier 226 

removal (McLaughlin et al., 2013). Furthermore, we included predictions of future species 227 

distributions to prioritize barriers for removal under possible future climate conditions because 228 

species distribution shifts by climate change may reduce the effectiveness of current 229 

management actions in the Great Lakes region (Collingsworth et al., 2017; Lynch et al., 2015). 230 

Predicted distributions of cool-, cold-, and warm-water fish in the mid and late 21st century 231 

throughout the Fruitbelt region were downloaded from FishVis (Table 2).  232 

 233 
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First, we ran the optimization model within Fishwerks (scenario code: N, no local information; 234 

“base scenario” hereafter), which maximizes total accessibility-weighted upstream habitat for 235 

migratory fish under a given budget, to produce a portfolio of removals (Moody et al., 2017; 236 

Neeson et al., 2015). The accessibility-weighted upstream habitat was calculated as river 237 

length (potential habitat) times the product of all downstream barriers’ passability (Neeson et 238 

al., 2015). The passability for barriers, which is included as part of the Fishwerks package, 239 

was defined as the proportion of fish able to pass through a barrier from downstream (Moody 240 

et al., 2017; Neeson et al., 2015). Three levels of passability for each barrier can be found in 241 

Fishwerks to represent the effect of barriers on fish with weak, moderate, or strong swimming 242 

ability (Moody et al., 2017). For simplicity, the passability for moderate swimmers was used 243 

in this study.  244 

 245 

Then, we incorporated additional local information (described in detail below), extracted from 246 

other DSTs, to weight upstream habitat and produce other portfolios of barriers prioritized for 247 

removal. Additional local information included projected species distribution in the late-20th, 248 

mid-21st, and late-21st century for three thermal guilds (1961–2000: cold-water species, Cd1; 249 

cool-water species, Cl1; warm-water species, W1; 2046–2065: cold-water species, Cd2; 250 

cool-water species, Cl2; warm-water species, W2; and 2081–2100: cold-water species, Cd3; 251 

cool-water species, Cl3; warm-water species, W3). Future climate conditions were estimated 252 

from 13 general circulation models under the A1B emissions scenario (FishVis: Stewart et al., 253 

2016a). Other local habitat condition data included a water quality index (Q) that represented 254 

water quality impairments weighted by the response of the fish community (FishTail: Daniel 255 

et al., 2017); indices for local land-use (Lul) and cumulative land-use (Luc), including urban 256 

and agricultural land-use, and percent impervious surface cover (FishTail: Daniel et al., 2017); 257 

and terminal barriers that block sea lamprey migration (Lam), which were extracted from Sea 258 

Lamprey Control Map (http://data.glfc.org/). Projected species distribution data were 259 
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downloaded from the US Geological Survey database (FishTail: Daniel et al., 2017; FishVis: 260 

Stewart et al., 2016b). Then, these variables were normalized to a zero to one scale and used to 261 

weight the original accessibility-weighted habitat in the Fishwerks optimization model. In the 262 

normalized scale, zero represented the absence of certain species or the worst habitat condition 263 

projected while one represented the presence of certain species or the best habitat condition 264 

projected. In these scenarios, the optimization model maximized total upstream habitat, 265 

weighted by both local information and accessibility. Finally, for the sea lamprey blocking 266 

scenario (Lam), we prioritized barriers similar to the base scenario (N) but excluded all 267 

terminal barriers that blocked sea lamprey migration from Lake Michigan. In total, 14 268 

scenarios were analyzed, as shown in Table 2. Budgets of $2.0, 2.5, and 3.0 million U.S. 269 

Dollars (USD) were used to run optimization models because this is the range of funds 270 

available to the Michigan Tribal Stream and Fruitbelt Collaborative for barrier removal 271 

projects in the study region. 272 

 273 

We ran optimizations in a research version of Fishwerks (available online: 274 

https://neos-server.org/neos/solvers/application:Fishwerks/csv.html) that allowed us to 275 

incorporate custom barrier inventory data with additional local information. This is different 276 

from the current online version of Fishwerks, which can only optimize barrier removals with 277 

built-in river length data.  278 

 279 

The influence of local information was assessed by comparing the effectiveness, cost, and 280 

simulated suite of barriers selected among barrier removal scenarios that were prioritized with 281 

or without local information. Effectiveness (“habitat gain”, hereafter) represents predicted 282 

habitat gain in kilometers, weighted by different biological and habitat condition indices 283 

(Table 3), including: (1) the percentage gain of river length (effectiveness code: Len); (2) 284 

cold-water habitat (Cdh); (3) cool-water habitat (Clh); (4) warm-water habitat (Wh); (5) 285 
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quality habitat (Qh); (6) quality local land-use habitat (Llh); and (7) quality cumulative 286 

land-use habitat gain (Lch). We calculated total habitat gain and compared the differences in 287 

seven types of effectiveness (as described above) among 14 scenarios. For instance, given a 288 

budget, which scenario might produce more habitat gain for cold-water species (Cdh)? A 289 

second variable, cost, represents the estimated cost for removing barriers and applying 290 

lampricide after removal (Table 3). Although the total cost for removing barriers across 291 

scenarios will be similar under given budget limits, we identified different barriers selected by 292 

base scenario (N) and each one of the other scenarios and calculated the cost of these barriers. 293 

For example, if two barriers selected by the scenario with additional water quality (Q) 294 

information were not selected by the scenario without local information (N), the difference in 295 

cost between these two scenarios will be the sum of these two barriers. Finally, we compared 296 

selected barriers among scenarios by examining: (1) the spatial distribution of selected 297 

barriers; (2) selection frequency of each barrier; and (3) the percentage of barriers that were 298 

repeatedly selected by both the scenario without local information (N) and each one of the 299 

other scenarios. 300 

 301 

Results 302 

Differences in the cost, locations, and number of barriers 303 

The selected portfolios of barriers were similar regardless of the input of additional local 304 

information for 13 out of 14 scenarios, with the sea lamprey blocking scenario (Lam) as the 305 

one exception (Figs. 3 & 4). Selected barriers were scattered throughout the study area for 306 

most scenarios, with 20 barriers selected in seven or more scenarios as important barriers to be 307 

removed (Fig. 3a). The differences in selected barriers between the base scenario (N) and 308 

scenarios using additional information, such as cold-water species distribution (including 309 

distribution shift by climate change: Cd1–3), water quality (Q) or land-use indices (Lul & Luc) 310 
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were relatively small (> 75% overlap of selected barriers with < $0.75 million USD cost 311 

differences). Adding local information for cool-water and warm-water species (Cl1–3 & W1–312 

3) resulted in moderate differences in barriers chosen, compared to the base scenario (25–75% 313 

overlap with around $1–2 million USD cost differences; Fig. 4). If all important barriers for 314 

blocking sea lamprey migration were left intact (Lam), selected barriers were concentrated in 315 

a few watersheds, especially in small tributaries around Lake Charlevoix and the lower 316 

Manistee River (Fig. 3b). Less than 6% of barriers were selected in both the base scenario and 317 

the sea lamprey blocking scenario, and the differences in cost were around $4–6 million USD 318 

(Fig. 4). Increasing the budget could increase the number of barriers selected (scenarios except 319 

Lam: 9–13 barriers given $2 million USD, 14–18 barriers given $2.5 million USD, and 18–26 320 

barriers given $3 million USD), however, three to four times more barriers were selected 321 

under the sea lamprey blocking scenario (Lam) than other scenarios across budgets (49 322 

barriers given $2 million USD, 59 barriers given $2.5 million USD, and 67 given $3 million 323 

USD). 324 

 325 

Differences in habitat gain (effectiveness) and cost of lampricide 326 

1. Among scenarios (excluding climate change) 327 

Although the gain in target habitat was optimized in every scenario, the gain in other habitats 328 

varied among scenarios (Fig. 5). For example, while the cold-water fish scenario (Cd) 329 

produced the highest effectiveness for cold-water habitat (Cdh) and the warm-water fish 330 

scenario (W) produced the largest connected warm-water habitat (Wh) among all scenarios, 331 

the effectiveness for other habitats (e.g., the gain of quality local land-use habitat, Llh) were 332 

also different between these two scenarios. In general, the gain in all habitat types was similar, 333 

with 110–160% habitat gain among most scenarios like the base, cold-water fish, water quality, 334 

local land-use, and cumulative land-use scenarios, but the habitat gains were around 10 – 25% 335 
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lower in cold-water and warm-water fish scenarios. The smallest habitat gain for all types of 336 

habitats was found in the sea lamprey blocking scenario (Lam, < 20% habitat gain; Fig. 5). 337 

Estimated costs for lampricide were similar among most scenarios, except for the cool-water 338 

and warm-water fish scenarios. Lampricide cost was not considered for the sea lamprey 339 

blocking scenario because all downstream barriers that block sea lamprey migration remained 340 

in place.  341 

 342 

2. The effectiveness under climate change 343 

Overall, the amount of target habitat for all thermal guilds (cold-water, cool-water, and 344 

warm-water species) increased (or remained the same) in the mid-21st century but was 345 

followed by a 20–30% decrease in the late-21st century. Incorporating climate change and 346 

species distribution data produced the greatest gain in target habitat, because the model 347 

maximized accessible habitats while accounting for predicted climate conditions, but the 348 

contribution of these sources of information varied among years, habitats, and budgets. For 349 

example, the incorporation of climate change and species distribution information yielded a 350 

set of barrier removals that would result in 20% more cool-water habitats under the $2 million 351 

USD budget in the late-21st century, relative to the base scenario (N); there was no or little 352 

benefit from including these sources of information when prioritizing for cool-water habitats 353 

under the same budget in the middle of 21st century or under a $2.5 million USD budget in the 354 

end of 21st century. Interestingly, although the improvement produced from the addition of 355 

climate change data (i.e., the differences between solid and dashed lines in Fig. 6) increased 356 

through time, the differences between using both climate change and species distribution data 357 

(solid lines) and using no local data at all (dotted lines) declined by the end of the 21st century 358 

(Fig. 6).  359 

 360 
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Discussion 361 

In this study, we showed existing DSTs could be used to address two main issues that hinder 362 

the use of these tools by managers: (1) the alignment of DSTs with the objectives and context 363 

of a policy, and (2) the ability of DSTs to perform despite limited data (Gibson et al., 2017). 364 

We also demonstrated how eight web-based DSTs with different data and functionality can be 365 

used to inform decision making for prioritizing barrier removal projects (Figs. 2). While no 366 

single DST covered all objectives in policy and management plans, information or data could 367 

be extracted from existing data-driven DSTs (e.g., FishVis, FishTail, Fish Habitat Decision 368 

Support Tool) or local inventories. Then, decision makers and managers can prioritize barrier 369 

removal projects through model-driven DSTs (e.g., OptiPass, Fishwerks) or manually (e.g., 370 

scoring and ranking, not shown in this study but see Martin and Apse, 2013). We further built 371 

a general guide (Fig. 7) to indicate ways to use existing DSTs in the protocol for barrier 372 

prioritization proposed by McKay et al. (2016). 373 

 374 

The improvement from the input of additional local information could be minor for barrier 375 

prioritization, however, caution is needed when applying regional DSTs to a local 376 

management area where the distributions of biodiversity and human disturbances are 377 

heterogeneous in fine scale. In general, information about homogeneously- and 378 

widely-distributed species (e.g., cold-water fish in our study area), habitat types, or 379 

disturbances (e.g., water quality index) may contribute less to the outcome, but trade-offs in 380 

effectiveness may occur if an objective is to optimize rare species (e.g., warm-water species in 381 

study area) or control nuisance species (McLaughlin et al., 2013). Although some studies have 382 

found that the resolution of regional DSTs might be too coarse for local management planning 383 

(Runting et al., 2013), river length, the variable optimized in Fishwerks, appears less sensitive 384 

to the input of additional local information. On the contrary, telemetry tracking data 385 
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substantially improved the results from DSTs for sea turtle conservation plans (Mazor et al., 386 

2016), and the cost-effectiveness of coastal wetland protection plans can be increased with 387 

high-resolution elevation data (Runting et al., 2013). Our results indicated that maintaining sea 388 

lamprey barriers produced low effectiveness in connectivity restoration, around 7 times less 389 

than other scenarios, and required the removal of a large number of barriers, around 4 times 390 

more than other scenarios. Furthermore, an additional $1 to 3 million USD cost might be 391 

required to apply lampricide on newly-connected streams to control the sea lamprey 392 

population if sea lamprey barriers were removed. Although the estimated cost in this study 393 

may only represent the worst case because it assumed that every newly-opened stream 394 

segment contains suitable spawning and rearing habitats for sea lamprey, the strong trade-off 395 

between restoring native fish populations and controlling sea lamprey may come from the 396 

overlapping distribution between native fish and sea lamprey (Milt et al., 2018). This last point 397 

highlights the need for DSTs that can integrate multiple objectives (e.g., migratory fish 398 

passage and invasive species control) that can be used as an aid when evaluating the trade-offs 399 

for decision-making in barrier prioritization (Hermoso et al., 2015). 400 

 401 

While the sea lamprey scenario in this study focused on maintaining the cost of lampricide 402 

application similar to status quo, which means keeping all terminal barriers intact, other 403 

scenarios could be used to examine the trade-off between restoring native fish and controlling 404 

alien species. For example, managers may want to know the effectiveness of barrier removal 405 

when an additional budget has been assigned to cover the lampricide cost, in addition to the 406 

barrier removal budget. Another scenario is to prioritize barriers when an overall budget is 407 

required to be spent on both barrier removals and lampricide applications. By incorporating 408 

potential lampricide expenses into prioritization, these scenarios have the ability to open up 409 

more upstream habitats for native fish, as compared to the sea lamprey scenario in this study. 410 
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These scenarios can also be analyzed within the current version of Fishwerks. However, under 411 

current management scheme, budgets for removing barriers are usually managed and provided 412 

by agencies (i.e., federal, state, tribal, municipal, and non-government organizations) that 413 

differ from the agency in charge of applying lampricide (i.e., Great Lakes Fishery 414 

Commission). Studies that evaluate the effectiveness and trade-offs of these scenarios could be 415 

beneficial to future management because coordinating efforts and cost-sharing strategies may 416 

improve the return-on-investment of barrier removal prioritization (Neeson et al., 2018, 2015). 417 

 418 

As expected, incorporating predicted species distribution data under climate change can 419 

increase effectiveness of barrier removal up to 20%, but this improvement varied with time, 420 

fish thermal guilds, and budget, and lacked a general pattern. Interestingly, percentage habitat 421 

gain from barrier removals changed through time, with a pattern different from predicted 422 

species distribution change. For example, effectiveness of barrier removal for warm-water 423 

species increased a small amount then reduced about 30% in the late 21st century under $2 424 

million USD budget while previous studies and the DST we used, FishVis, suggest a gradual 425 

expansion of warm-water habitats across the Great Lakes Basin with a changing climate 426 

(Collingsworth et al., 2017; Melles et al., 2015; Stewart et al., 2016a). In general, water 427 

temperature becomes warmer in reaches close to river mouths (Zorn et al., 2008). Therefore, 428 

the predicted increase of warm-water habitats might mainly occur in downstream reaches, 429 

which are less affected by barriers, compared to upstream cold-water habitats. Nevertheless, 430 

the spatial distribution of cold groundwater inflow also plays an important role in determining 431 

stream temperature (Zorn et al., 2008), thus influencing the effectiveness of barrier removal 432 

for fishes with different temperature preferences. Besides possible changes in the community 433 

composition of native fish, climate change may also influence the distribution of nuisance 434 

species (Melles et al., 2015). Therefore, although uncertainties in climate models and fish 435 
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thermal guilds’ responses make predicting the influence of climate change on barrier 436 

prioritization difficult, incorporating climate change into DSTs can improve the flexibility of 437 

management plans and mechanisms for risk assessment (Lynch et al., 2015; Melles et al., 438 

2015). 439 

 440 

Other methods and DSTs, besides the Fishwerks optimization model, can be used to prioritize 441 

removal projects, such as scoring and ranking (e.g., Chesapeake Fish Passage Prioritization, 442 

web-based DST, Martin and Apse, 2013) and graph theoretic frameworks (e.g., Conefor, 443 

standalone software, Saura and Torné, 2009). However, scoring and ranking methods are 444 

incapable of fully accounting for the cumulative effects within barrier networks, and graph 445 

theoretic frameworks do not produce a recommended removal list (King and O’Hanley, 2016). 446 

While managers and stakeholders within the Great Lakes region can use Fishwerks without 447 

the input of additional data, users in other places might need to rely on more commonly-used 448 

scoring and ranking methods or optimization models requiring user input data. For example, 449 

regional DSTs with local environmental, ecological, and connectivity data using scoring and 450 

ranking methods have been developed for watersheds in the Northeast US, Chesapeake Bay, 451 

and Southeast US (reviewed in McKay et al., 2016). One DST reviewed in this study, 452 

OptiPass, is a standalone software with an optimization model that can be applied to any 453 

watershed given user input data, such as the location, cost, and passability of candidate 454 

barriers and flowlines (O’Hanley, 2015). 455 

 456 

Factors that may improve the use of existing barrier prioritization methods and DSTs by 457 

managers and stakeholders, such as prioritizing barrier removal for resident species, ensuring 458 

the data are up-to-date, and incorporating socio-economic and political variables, have been 459 

discussed in previous studies (King and O’Hanley, 2016; McKay et al., 2016; Moody et al., 460 
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2017). Currently available software may be unattractive to managers because of the inability 461 

to easily incorporate local, additional, or high-resolution data (e.g. Fishwerks) or because of 462 

the requirement to input all analysis data (e.g. OptiPass). In addition, sedimentation control 463 

was a key management objective in many local watershed plans that we reviewed, but we 464 

found that neither regional barrier prioritization projects nor DSTs explicitly considered this 465 

key variable. In the study region, watershed managers often prioritize road-stream crossings 466 

for upgrade according to the risk of sedimentation rather than their impact on river 467 

connectivity (Shook, D. [Grand Traverse Band of Ottawa and Chippewa Indians] and Beyer, 468 

A. [Conservation Resource Alliance], personal communication, 2017). The use of 469 

sedimentation information could be because most road-stream crossings, which are usually 470 

treated as a source of sedimentation, are managed by local authorities, whereas the effect of 471 

dams, generally assessed as barriers for connectivity, is addressed at a regional or national 472 

scale (Neeson et al., 2015). Increasing the functionality and flexibility of web-based barrier 473 

prioritization DSTs to incorporate data other than the built-in database might lead to greater 474 

use by managers. For example, local managers in the Fruitbelt region would like to 475 

incorporate socio-economic factors such as the willingness of stakeholders to remove certain 476 

barriers or erosion risk into the cost function in prioritization modelling if data are available 477 

(Shook, D. and Beyer, A., personal communication, 2017). Improving the communication 478 

between tool developers and users during the development of DSTs could help developers 479 

understand the needs of users and thus allow for incorporating policy and management 480 

plan-relevant information into DSTs or increasing the flexibility of models. 481 

 482 

While the improvement of the database and modelling ability can enhance the usefulness of 483 

DSTs, it is important to note that the main purpose of DSTs is to support and facilitate, not to 484 

replace, the decision-making process (Power and Sharda, 2009). River restoration plans 485 
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usually involve multiple stakeholders with competing interests, and some variables and 486 

objectives may be difficult to quantify and incorporate into DSTs (Langford and Shaw, 2014; 487 

McKay et al., 2016). The incorporation of local interests and opinions is especially important 488 

for small dam removal because many decisions are strongly influenced by the willingness of 489 

local stakeholders and communities instead of ecological or economic impact (Fox et al., 490 

2016). The use of decision analysis, such as structured decision making and adaptive 491 

management, which is increasingly being applied to wildlife management and conservation 492 

issues (e.g., Gregory and Long, 2009; Robinson et al., 2016), provides a promising way to 493 

incorporate diverse interests and objectives into the decision-making process to reduce 494 

possible conflicts. A key challenge for DSTs is to generate predicted effectiveness after 495 

removal for comparing the trade-offs among scenarios, which is an important step in decision 496 

analysis (Gregory et al., 2012). Predicted effectiveness can be the amount of habitat gain for 497 

target fish species as in this study, or even potential changes in the target fish population if 498 

demographic data and population models are available (e.g., Jensen and Jones, 2017; Zheng 499 

and Hobbs, 2013). In addition, incorporating the tools of strategic foresight (e.g., scenario 500 

planning; Cook et al., 2014) to a decision analytic framework can help users to explicitly 501 

evaluate the uncertainties related to future conditions, such as climate change (Schwartz et al., 502 

2017). 503 

 504 

Although we tried to enhance the connection between existing web-based DSTs and 505 

on-the-ground management by addressing the issues in Gibson et al. (2017), other factors may 506 

influence the uptake of DSTs by managers and stakeholders. Combining information from 507 

multiple DSTs might make managers less likely to use these tools, especially if they need to 508 

spend time reformatting and integrating data from different sources (Gibson et al., 2017). 509 

While all DSTs we reviewed can be applied on regional or local scales, we found that many 510 
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local decision makers and stakeholders were not aware they existed. Furthermore, some policy 511 

makers prefer subjective judgements from experts rather than quantified outcomes from 512 

mathematical models (Addison et al., 2013). Continuous communication between DST 513 

developers and potential users is necessary if these tools will be relevant (Gibson et al., 2017; 514 

McIntosh et al., 2011). In addition, user training and support are also important factors 515 

influencing the willingness of managers and stakeholders to use the tool (Díez and McIntosh, 516 

2009). Ultimately, it is critical to build trust between both developers and end-users to 517 

enhance the usefulness of these tools (Díez and McIntosh, 2009). 518 

 519 

Conclusions 520 

We demonstrated a way to guide the use of existing web-based DSTs for managers and 521 

stakeholders according to objectives derived from policy/management plans. Our results 522 

suggest that although some DSTs could produce outcomes that were insensitive to some local 523 

data, the trade-offs among user defined objectives (e.g., cold-water species vs. warm-water 524 

species or invasive species) might influence the effectiveness of DSTs or change the set of 525 

barriers selected for removal. Overall, regional DSTs have the ability to aid local decisions 526 

about barrier prioritization by providing important biological, environmental, and 527 

socio-economic data and/or, modelling functions, especially if used as a tool within a larger 528 

decision-making framework, such as decision analysis. Therefore, the development and 529 

maintenance of regional DSTs could facilitate both local and regional decision-making 530 

processes. Possible improvements for existing barrier removal prioritization DSTs include 531 

increasing model flexibility, dealing with sedimentation issues, incorporating other 532 

socio-economic factors, and improving the communication and training between tool 533 

developer and users. As the development of DSTs is growing, we hope to mitigate the gap 534 

between these useful tools and management actions. 535 
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Table 1. Decision support tools that we evaluated to facilitate barrier prioritization in 735 

Michigan’s Fruitbelt region. 736 

Tool name Tool type Tool description, link, and spatial extent  
FishVis Web-based map 

(data-driven) 

Display the distributions of 13 fish species (4 warm-water, 5 

cool-water, and 4 cold-water species) under current and 

future climate conditions (Stewart et al., 2016a) 

(https://ccviewer.wim.usgs.gov/FishVis/#); US Great Lakes 

Basin, part of the Upper Mississippi River Basin (Minnesota 

and Wisconsin), and part of the Mid-Atlantic Basin (New 

York) 

FishTail Web-based map 

(data-driven) 

Display the current and future condition of stream habitat 

under human disturbances and climate change (Daniel et al., 

2017) (https://ccviewer.wim.usgs.gov/fishtail/#); US 

Northeast and Midwest region 

High Impact Targeting Interactive map 

(data-driven) 

Display erosion risk and sediment loading, and evaluate the 

cost-benefits of best management practices 

(http://www.iwr.msu.edu/hit2/); US Great Lakes Basin 

Sea Lamprey Control 

Map 

Interactive map 

(data-driven) 

Display existing barriers, sea lamprey infestation extent and 

lampricide treatment history, and effects of building or 

removing barriers on the accessibility of upstream habitat for 

sea lamprey (http://data.glfc.org/); Canada and US Great 

Lakes Basin 

Geospatial Fisheries 

Information Network 

Interactive map 

(data-driven) 

Display existing barriers and show their effects on 

accessibility of upstream habitat for migratory species 

(https://ecos.fws.gov/geofin/); US watersheds 

Fish Habitat Decision 

Support Tool 

Interactive map with 

analytical functions 

(data-driven) 

Display and analyze a variety of biological, environmental, 

and socio-economic spatial data 

(http://www.fishhabitattool.org/home.html); US Northeast 

and Midwest region 

Fishwerks Interactive map with 

optimization functions 

(model-driven) 

Display existing barriers and optimize barrier removal 

projects under a given budget (Moody et al., 2017) 

(https://greatlakesconnectivity.org/); Canada and US Great 

Lakes Basin 

OptiPass Standalone software 

(model-driven) 

Optimize barrier removal projects, but without map 

visualization capabilities. Requires user to download and run 

the model with user provided input data (O’Hanley, 2015) 

(https://greatlakesinform.org/decision-tools/573); depends on 

https://ccviewer.wim.usgs.gov/FishVis/
https://ccviewer.wim.usgs.gov/fishtail/
http://www.iwr.msu.edu/hit2/
https://greatlakesinform.org/decision-tools/573
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input data 
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Table 2. Fourteen scenarios analyzed for comparing modelling outcomes (effectiveness and 739 

cost) given different local data input. 740 

Scenario (code) Target for optimization model to maximize Source DST  
No local information/base 

scenario (N) 

(habitat size*) × (accessibility**) Fishwerks 

Cold-water fish distribution in 

the late-20th century (Cd1) 

(habitat size) × (accessibility) × (predicted occurrence 

of cold-water fish in 1961–2000) 

Fishwerks, FishVis 

Cool-water fish distribution in 

the late-20th century (Cl1) 

(habitat size) × (accessibility) × (predicted occurrence 

of cool-water fish in 1961–2000) 

Fishwerks, FishVis 

Warm-water fish distribution in 

the late-20th century (W1) 

(habitat size) × (accessibility) × (predicted occurrence 

of cool-water fish in 1961–2000) 

Fishwerks, FishVis 

Cold-water fish distribution in 

the mid-21st century (Cd2) 

(habitat size) × (accessibility) × (predicted occurrence 

of cold-water fish in 2046–2065) 

Fishwerks, FishVis 

Cool-water fish distribution in 

the mid-21st century (Cl2) 

(habitat size) × (accessibility) × (predicted occurrence 

of cool-water fish in 2046–2065) 

Fishwerks, FishVis 

Warm-water fish distribution in 

the mid-21st century (W2) 

(habitat size) × (accessibility) × (predicted occurrence 

of warm-water fish in 2046–2065) 

Fishwerks, FishVis 

Cold-water fish distribution in 

the late-21st century (Cd3) 

(habitat size) × (accessibility) × (predicted occurrence 

of cold-water fish in 2081–2100) 

Fishwerks, FishVis 

Cool-water fish distribution in 

the late-21st century (Cl3) 

(habitat size) × (accessibility) × (predicted occurrence 

of cool-water fish in 2081–2100) 

Fishwerks, FishVis 

Warm-water fish distribution in 

the late-21st century (W3) 

(habitat size) × (accessibility) × (predicted occurrence 

of warm-water fish in 2081–2100) 

Fishwerks, FishVis 

Water quality (Q) (habitat size) × (accessibility) × (water quality index) Fishwerks, FishTail 

Local land-use (Lul) (habitat size) × (accessibility) × (local land-use index) Fishwerks, FishTail 

Cumulative land-use*** (Luc) (habitat size) × (accessibility) × (cumulative land-use 

index***) 

Fishwerks, FishTail 

Lamprey blocking (Lam) (habitat size) × (accessibility); similar to base scenario 

but keep all critical sea lamprey barriers intact 

Fishwerks, Sea 

Lamprey Control 

Map 

* Habitat size is the upstream river length (km) of a particular barrier. **Accessibility is calculated as the product 741 

of the passability rating of a particular barrier and all downstream barriers. ***Cumulative represents a combined 742 

index that includes the disturbances in local and all upstream catchments (see Esselman et al., 2011). 743 

  744 
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Table 3. A description of effectiveness and cost used to compare the outcomes of fourteen 745 

barrier prioritization scenarios.  746 

 Name (code) Description: calculation 
Effectiveness Habitat (river length) gain 

(Len) 

The increase of accessibility-weighted habitat size, 

∆∑ (ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖) × (𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖)𝐼𝐼
𝑖𝑖=1 , where I = all river 

segments/potential habitats in study area, after the removal of 

selected barriers 

 Cold-water habitat gain 

(Cdh) 

The increase of accessibility- and cold-water fish distribution 

weighted habitat size, ∆∑ (ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖) × (𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) ×𝐼𝐼
𝑖𝑖=1

(𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑝𝑝 𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑝𝑝𝑝𝑝𝑠𝑠𝑜𝑜𝑎𝑎𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑜𝑜𝑎𝑎𝑝𝑝-𝑤𝑤𝑎𝑎𝑎𝑎𝑠𝑠𝑝𝑝 𝑜𝑜𝑎𝑎𝑠𝑠ℎ𝑖𝑖), the removal of 

selected barriers 

 Cool-water habitat gain 

(Clh) 

The increase of accessibility- and cool-water fish distribution 

weighted habitat size, ∆∑ (ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖) × (𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) ×𝐼𝐼
𝑖𝑖=1

(𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑝𝑝 𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑝𝑝𝑝𝑝𝑠𝑠𝑜𝑜𝑎𝑎𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎-𝑤𝑤𝑎𝑎𝑎𝑎𝑠𝑠𝑝𝑝 𝑜𝑜𝑎𝑎𝑠𝑠ℎ𝑖𝑖), after the 

removal of selected barriers 

 Warm-water habitat gain 

(Wh) 

The increase of accessibility- and warm-water fish distribution 

weighted habitat size, ∆∑ (ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖) × (𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) ×𝐼𝐼
𝑖𝑖=1

(𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑝𝑝 𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑝𝑝𝑝𝑝𝑠𝑠𝑜𝑜𝑎𝑎𝑠𝑠 𝑜𝑜𝑜𝑜 𝑤𝑤𝑎𝑎𝑝𝑝𝑤𝑤-𝑤𝑤𝑎𝑎𝑎𝑎𝑠𝑠𝑝𝑝 𝑜𝑜𝑎𝑎𝑠𝑠ℎ𝑖𝑖), after the 

removal of selected barriers 

 Quality habitat gain (Qh) The increase of accessibility- and water quality index-weighted 

habitat size, ∆∑ (ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖) × (𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) ×𝐼𝐼
𝑖𝑖=1

(𝑤𝑤𝑎𝑎𝑎𝑎𝑠𝑠𝑝𝑝 𝑞𝑞𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑜𝑜𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖), after the removal of selected barriers 

 Quality local land-use 

habitat gain (Llh) 

The increase of accessibility- and local land-use index-weighted 

habitat size, ∆∑ (ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖) × (𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) ×𝐼𝐼
𝑖𝑖=1

(𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑜𝑜𝑝𝑝-𝑜𝑜𝑠𝑠𝑠𝑠 𝑎𝑎𝑜𝑜𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖), after the removal of selected barriers 

 Quality cumulative 

land-use habitat gain 

(Lch) 

The increase of accessibility- and cumulative land-use 

index-weighted habitat size, ∆∑ (ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖) ×𝐼𝐼
𝑖𝑖=1

(𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖) × (𝑎𝑎𝑜𝑜𝑤𝑤𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑠𝑠 𝑎𝑎𝑎𝑎𝑜𝑜𝑝𝑝-𝑜𝑜𝑠𝑠𝑠𝑠 𝑎𝑎𝑜𝑜𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖), after the 

removal of selected barriers 

Cost Cost for removing barrier Estimated cost for dam removal or culvert upgrade, details in 

Neeson et al. (2015) 

 Cost for lampricide Estimated cost for applying lampricide after barrier removal, details 

in the metadata document of Fishwerks 
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Figure captions 749 

Fig. 1 The location and name of local watershed management plans that were reviewed in this 750 

study (a). The black box in (b) indicates the location and range of the case study area (a) in the 751 

Laurentian Great Lakes region. 752 

 753 

Fig. 2 Flowchart for choosing DSTs based on objectives and data availability. HIT: High 754 

Impact Targeting, FHDST: Fish Habitat Decision Support Tool. *Although the prioritization 755 

can be done manually (e.g., scoring and ranking method) with local inventory data input, users 756 

can also use model-driven DSTs such as OptiPass or Fishwerks to help optimize removal 757 

projects. 758 

 759 

Fig. 3 The location and selection frequency of barriers selected by optimization models given 760 

a $3 million USD budget in (a) the base scenario and 12 scenarios that incorporated local 761 

information, and (b) the sea lamprey blocking scenario. 762 

 763 

Fig. 4 Differences between the costs (bars) and the locations (dots: percent overlap, where 764 

100% represents the same set of barriers was selected by two scenarios and 0% represents 765 

none of the selected barriers are the same) of barriers selected by the base scenario and 13 766 

scenarios of local data inclusion (x-axis) under three different budgets in Fishwerks. Cd: 767 

cold-water species, Cl: cool-water species, W: warm-water species, Q: water quality, Lul: 768 

land-use (local), Luc: land-use (cumulative), Lam: sea lamprey blocking, 1: projected species 769 

distribution in 1961–2000, 2: distribution in 2046–2065, 3: distribution in 2081–2100. 770 

 771 

Fig. 5 The cost for lampricide (bars) and the effectiveness (percentage gain of 772 

quality-accessibility-weighted habitat; symbols) among scenarios under 1961–2000 climate 773 
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conditions, for budgets of $2.0, 2.5, and 3.0 million USD. Scenario: N: base scenario, Cd: 774 

cold-water species, Cl: cool-water species, W: warm-water species, Q: water quality, Lul: 775 

land-use (local), Luc: land-use (cumulative), Lam: sea lamprey blocking. Habitat: Cdh: 776 

cold-water habitat, Clh: cool-water habitat, Len: river length, Lch: quality cumulative land-use 777 

habitat, Llh: quality local land-use habitat, Qh: quality habitat, Wh: warm-water habitat. 778 

 779 

Fig. 6 The percent gain of quality- and accessibility-weighted habitat among scenarios in 780 

late-20th (1961–2000), mid-21st (2046–2065), and late-21st century (2081–2100) at budgets 781 

of $2.0, 2.5, and 3.0 million USD for cold-water habitat (circle), cool-water habitat (triangle), 782 

warm-water habitat (square), and river length (cross). Results are presented for scenarios 783 

including climate change and species distribution information (solid line), without climate 784 

change but with species distribution information (dashed line), and without climate change 785 

and species distribution information (dotted line). 786 

 787 

Fig. 7 Recommendations (light grey boxes) of using existing DSTs in the steps of barrier 788 

removal prioritization protocol (dark grey boxes) that were proposed by McKay et al., (2016). 789 

  790 



38 
 

Fig. 1 791 
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Fig. 2 793 
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Fig. 3 796 
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Fig. 4 799 
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Fig. 5 802 
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