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ABSTRACT 

Although measurement error in agricultural field area and productivity data for developing countries 

is widely acknowledged, there is still a shortage of evidence on what the errors imply for researchers, 

and even less evidence on what the implications may be for farmers. In this study we investigate 

field size measurement errors on Zambian maize fields to examine the nature of these errors and the 

implications they have for: 1) our ability to understand productivity, 2) actual productivity, and 3) 

our broader understanding of total land use. Using a nationally representative dataset on Zambian 

smallholder maize plots, we compare self-reported (SR) and global positioning system (GPS) 

measures of land area on a farm’s largest maize plot to assess how measurement error might affect 

productivity estimates and farmer input use. Consistent with other studies, we find strong evidence 

that the land area of relatively smaller fields is overstated, and relatively larger fields is understated. 

However, correcting for this measurement error using GPS measurements appears to strengthen the 

evidence of an inverse relationship between field size and productivity. Additionally, we find strong 

evidence to suggest farmers themselves believe the area figures they report to enumerators and that 

their input use is more closely aligned with the reported field sizes than actual field sizes. Based on 

these results and insights from semi-structured interviews with farmers and extension agents, we 

argue that measurement error may affect real productivity in addition to productivity estimates. 

Strengthening extension efforts to improve farmer understanding of land area measurements may be 

an important and affordable way to improve productivity. Moreover, improving the accuracy of data 

collection for area seems feasible and will improve researchers’ understanding of productivity. 
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1. INTRODUCTION 

Although measurement error in agricultural field area and productivity data for developing countries 
is widely acknowledged, there is still a shortage of evidence on what the errors imply for researchers, 
and even less evidence on what the implications may be for farmers. In this study, we aim to 
investigate field size measurement errors on Zambian maize fields to examine the nature of these 
errors and the implications they have for: 1) our ability to understand productivity, 2) actual 
productivity, and 3) our broader understanding of total land use.  
 
Increasing availability of objective field size measurements linked to self-reported (SR) field sizes has 
provided strong evidence that measurement error is a widespread problem throughout Sub-Saharan 
Africa (SSA). Comparing SR data with either global positioning system (GPS) or compass-and-rope 
(CR) measurements under a mixed methods approach has consistently revealed the existence of land 
size measurement error in SR methods (De Groote and Traoré 2005; Carletto, Savastano, and Zezza 
2013; Holden and Fisher 2013; Carletto, Gourlay, and Winters 2015; Dillon et al. 2019; Abay et al. 
2019). SR measurements are imprecise by definition; even if, at some point, every survey respondent 
had been told with absolute certainty the hectarage of their fields, there is a non-zero probability that 
some people will err (or deceive) when reporting these figures to an enumerator.1 
 
While the existence of area measurement error is not surprising, it may also be true that even very 
large measurement errors within a dataset are not particularly concerning (at least not to the analysts 
studying the data). Classical measurement errors (CME) are random and decrease the precision of, 
say, regression parameter estimates but they are still unbiased and consistent. With a large enough 
sample, we can derive sufficiently narrow confidence intervals around these estimates to make them 
useful even in the presence of CME.  
 
Although measurement error is not terribly surprising and CME need not overly worry analysts, a 
proliferation of evidence suggests land area (and thus agricultural productivity) data suffer from 
measurement errors that are not random (De Groote and Traoré 2005; Carletto, Gourlay, and 
Winters 2013; Gourlay, Kilic, and Lobell 2019). These non-classical measurement errors (NCMEs) 
may be correlated with either the actual level of the value they endeavor to measure or other key 
variables. In the case of field size measurement, an example of NCME would be mismeasurement 
that is correlated with the actual size of the field—that is, if large field sizes are more likely to be 
underreported by survey respondents or vice versa. NCMEs are more troubling than CMEs because 
estimates of, say, yield or the correlation between yield and field size will be biased and inconsistent 
in the presence of NCME. Moreover, the direction of bias in the latter case is unclear because the 
mismeasurement affects both sides of the correlation equation (Abay et al. 2019). 
 
There is strong evidence to suggest that NCME is present in farmer-reported plot- and farm-level 
area measurements across SSA: small plot or farm areas tend to be overstated and large plot or farm 
areas tend to be understated relative to their true values (De Groote and Traoré 2005; Holden and 
Fisher 2013; Carletto, Gourlay, and Winters 2015; Dillon et al. 2019; Abay et al. 2019). Drawing on 
data from Malawi, Tanzania, Uganda, and Niger, Carletto, Gourlay, and Winters (2015) demonstrate 
that the magnitude of measurement error varies across country contexts when comparing SR and 
GPS instruments. For example, on small plots (< 0.5 ha), measurement errors range from 90% in 
Malawi to 580% in Niger (Carletto, Gourlay, and Winters 2015). Looking at large plots (>5 ha), bias 
ranges from -28% in Uganda to -59% in Malawi; however, medium-size plots (1-5 ha) report smaller 
errors. Similar relationships exist when comparing SR with CR instruments (Dillon et al. 2019; Abay 

                                                 
1 Enumerators themselves may err, for that matter, but this is true of recording objective measures as well. 
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et al. 2019). It is important to note that while GPS measurements are superior to SR, they may be 
subject to some small measurement error in their own right. Dillon et al. (2019) find that GPS 
measurements understate land area in Nigeria on medium plots by 2.8% and small plots by -2.0% 
compared to CR methods.  
 
The majority of this literature has focused on the implications NCMEs have with respect to 
researchers’ understanding of agricultural productivity. Of particular interest has been what is often 
referred to as the inverse relationship (IR) between field size and yield, or the historical tendency for SR 
data to suggest that smaller fields achieve higher yields than larger fields. This relationship was first 
observed in Russia (Chayanov 1926) and India (Sen 1962), and has been found in a wide variety of 
production agriculture settings (Collier and Dercon 2014), including Zambia (Kimhi 2003).  Barrett, 
Bellemare, and Hou (2010) consider three alternative drivers of the IR: imperfect factor markets, 
omitted variables, and measurement error. Most factor market imperfections rely on the idea that 
smaller farms engage surplus labor (Sen 1966) or monitor more effectively (Feder 1985), leading to 
higher productivity. Barrett (1996) argues that imperfect land and insurance markets may lead small 
(large) farms to undersupply (oversupply) labor to protect against price fluctuations. Omitted 
variables for important variables in the production process (e.g., soil organic carbon) can lead to 
spurious correlation, due to unobserved plot heterogeneity (Benjamin 1995; Bhalla and Roy 1988). 
Finally, Lamb (2003) highlights how measurement error in land size that is correlated negatively with 
landholdings can lead to findings of an IR.  
 
Recent evidence suggests the IR may well be a function of NCME in plot areas or output. Holden 
and Fisher (2013) find significant evidence in Malawi that measurement error leads to 
overestimation of the IR on the smallest farms (<1 ha) and underestimation in the entire sample. 
Carletto, Savastano, and Zezza (2013) control for measurement error using GPS estimates in 
Uganda, finding stronger evidence of an inverse relationship while Gourlay, Kilic, and Lobell  (2019) 
find constant returns. The context of estimating the IR is important, as Carletto, Gourlay, and 
Winters (2015) overall find that the IR is stronger when estimated with SR data (e.g., Tanzania), but 
this result may differ based on the country of analysis. Similar NCME issues exist when using yield 
data. Desiere and Jolliffe (2018) compare SR and crop-cut yield measures in Ethiopia, finding strong 
evidence that the IR disappears when correcting for bias in output measurements. Abay et al. (2019) 
demonstrate that correcting for NCME in both plot size and output accounts for the IR using data 
from Ethiopia; however, correcting only a single variable’s NCME can bias results in any direction.  
 
This study makes several key contributions to the literature. First, we assess the prevalence of 
NCME and the implications for yield estimates and the IR using nationally representative data for 
the case of Zambia. To the best of our knowledge, this is the first study to compare SR and GPS 
measures of farm size in Zambia. 
 
Our second contribution is to address an important question that we feel has been overlooked in the 
measurement error conversation. Specifically, if the farmers providing SR data have a poor 
understanding of how many hectares they are tending, does this affect their input use rates and, 
therefore, the efficiency with which inputs are used?  
 
Before trying to answer this question, it is important to be clear that the potential problem lies not 
with a farmer’s misunderstanding of a field’s size, but with the disconnect that may exist between a 
farmer’s description of size and the descriptions used to convey agronomic recommendations. A 
farmer looking out at the piece of land they are farming knows how big it is in a real sense. 
However, they may not have very accurate knowledge of how big a piece of land is in terms of the 
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units of measurement that are used to communicate recommendations for application of inputs like 
seed and fertilizer. The problems such a disconnect would present could be immensely important. If 
a farmer believes they are following recommendations (or even if they are going against 
recommendations but using recommendations as a benchmark), one major potential downside is 
that the yields they realize will be inconsistent with what they were told to expect. This makes it 
more difficult to plan for input purchases, jeopardizes fragile incomes and food security, and has the 
added disadvantage of lowering the perceived credibility of the advice they are given. Instead they 
will ultimately be left to rely solely on their own practical knowledge and experimentation—which is 
of enormous value, to be sure, but which would be better if it were complemented with the 
knowledge of collective experience and scientific research. A major contribution of this article will 
be to examine this issue. 
 
Third, this article also explores why SR data have (potentially non-classical) measurement errors. 
Specifically, are these honest, but incorrect measurements (as described above), or is it also possible 
that farmers are compelled to deceive data collectors? There is ample incentive for the latter case—
often times, especially in Zambia, enumerators are employees of the same government statistics 
office that may be responsible for assessing tax liabilities (incenting farmers to underreport field 
sizes to possibly avoid taxation), or employees of an agricultural ministry responsible for allocating 
input subsidies (giving farmers incentive to overreport field sizes and thus, fertilizer needs). On the 
other hand, if farmers appear to be generally honest with enumerators, but often factually inaccurate, 
it is worth investigating the correlations with measurement error so that policy makers can aim to 
improve farmer knowledge of their farm sizes in the units used for extension recommendations, for 
example. Reducing field size measurement errors would benefit farmers and researchers alike. 
 
Finally, we explore the broader implications non-classical errors may have for our ability to quantify 
total land use, and specifically how much land is actually being used in aggregate. Africa is often 
described as land abundant, while African farmers are described as land constrained (see 
Chamberlin, Jayne, and Heady (2014) for discussion). This apparent contradiction may also be 
partially due to non-classical measurement error. Those describing Africa as land abundant point to 
evidence of total land present (measured with maps or other broad representations) less total land 
used (defined by farm data). If the quantity of land used has been systemically understated, the 
conflicting descriptions of land abundance from a continental perspective and land scarcity from a 
farmer’s perspective could be revealed as artifacts of poorly measured area data.  
 
In summary, to meet our objective of understanding the implications of field size measurement for 
researchers using the data, farmers providing the data and overall knowledge of land use, we answer 
five primary research questions, focusing on the case of Zambia: 
 

1. Does SR field size measurement suffer from NCME, or are these data generally accurate?  
2. How does area measurement error affect estimates of the aggregate land use? 
3. What does measurement error imply for the IR discussion?  
4. Do measurement errors affect smallholder input use?  

a. If errors are non-classical, how do reported and actual input use rates vary across 
different field sizes and between those who over and underreport field size? 

b. What are the yield implications of these findings for input use (would better 
knowledge lead to higher yields)?  

c. What do these findings suggest regarding whether respondents are deceptive, or 
honest but incorrect?  

5. Do education level and access to agricultural extension explain measurement errors? 
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We proceed as follows. Section 2 describes the data and overall methods. Section 3 presents the 
results for each of the research questions highlighted above. Section 4 summarizes our findings and 
discusses specific implications for researchers and policy makers and proposes feasible ways 
forward. 

 

  



 

6 

 

2. DATA AND METHODS 

This study employs data from the 2012 Rural Agricultural Livelihoods Survey (RALS) carried out in 
May and June 2012 as a collaborative effort between the Zambian Ministry of Agriculture and 
Livestock (MAL), the Central Statistics Office (CSO) and the Indaba Agricultural Policy Research 
Institute (IAPRI). Standard enumeration areas (SEAs) used by the CSO for census purposes were 
selected using probability proportional to size, and a constant sample size of 20 households was 
surveyed in each SEA. Pursuant to standard MAL protocols, within each SEA preference was given 
to certain underrepresented groups (e.g., those growing more than 5 ha, or those tending to certain 
types of livestock). To compensate for this non-randomness, CSO assigned each observation with a 
probability weight reflecting the likelihood of being included in the sample so that weighted results 
are considered representative at the national level and within provinces of smallholder farm 
households (defined in Zambia as those cultivating less than 20 ha). 
 
The RALS questionnaire covered a broad range of household economic data covering the 2011 
harvest and 2012 marketing season.2 Four of the 20 selected observations in each SEA were chosen 
at random3 to be included in the subsample used for this analysis, for which another small survey 
collected information related to the 2012 harvest for the household’s largest maize field.4 The area of 
each subsampled field in our sample was recorded from the farmer’s self-reporting in whatever units 
they specified (e.g., hectares, acres, limas (quarter hectares), or a farmer-specified fraction thereof), 
then converted to hectares using standard conversion values. Then, each field was also measured by 
walking the perimeter with a Garmin eTrex GPS unit with a 3-meter margin of error. For a full 
description of sampling methods see IAPRI (2012). A map of sample village locations can be found 
in Burke et al. (2019). 
 
The largest maize fields were chosen primarily because it was not feasible to measure all fields, and 
this was identified as the simplest way to standardize protocol. We acknowledge the caveat, 
however, that using only the largest field might introduce some sampling bias (e.g., if the largest 
maize fields tend to be more or less likely to be mismeasured than other maize fields). It is thus 
worth noting that the majority of households in the RALS (over 60%) have only one maize field to 
choose from. However, if our mean effects are drastically different than those found in earlier 
studies, this possible sampling drawback should be considered.  
 
In total, RALS respondents provided information for 1,680 largest maize field (LMF) surveys. Of 
this group, 16 (<1%) were missing GPS measurement data and 8 (<0.5%) were missing SR field 
sizes. Of the remaining 1,657 fields, four whose GPS-measured area is greater than 10 ha are 
omitted as outliers, but it is worth noting that all of our main results are also robust to their 
inclusion. The bulk of our analysis, therefore, is conducted using a full sample of 1,653 field-level 
observations. In Table 2 and Table 3, we also omit four observations whose fertilizer application 
rates are outliers (application rates over 5 tonnes/ha), which were most likely data entry errors, but 
these observations are included in all of the analysis that does not include a discussion of fertilizer 
rates.  

                                                 
2 The full questionnaire is available on-line at 
http://www.iapri.org.zm/images/Surveys/2012_Rural_Agricultural_Livelihoods_Survey.pdf 
3 Since the subsample was chosen at random, sample weights developed for the full sample can be used without 
adjustment for regression analysis or reporting means. For estimating aggregate statistics like total land at the national 
level, the weights need to be multiplied by 5. 
4 The smaller questionnaire has not been posted on-line but can be made available. 

http://www.iapri.org.zm/images/Surveys/2012_Rural_Agricultural_Livelihoods_Survey.pdf
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The methods employed to answer each research question will differ to fit each purpose. Rather than 
go through a detailed description of specific methods here, each will be described as results are 
presented in order to maintain a comprehensible organization. However, there are two broad 
categories that are used throughout, which we will define here. First, we identify each field as smaller 
or larger than 1.25 ha when measured by GPS.5 Second, each field is categorized depending on 
whether SR measurements are underreported, accurate, or overreported.  
 
The motivation for choosing 1.25 ha as the cutoff point is based on the analysis in Figure 1 because 
this seems to be a consistently identified point at which the nature of mismeasurement changes. To 
define SR measurements as either accurate or not we rely on the measurement error for the GPS 
units themselves, which can identify a location on the ground within 3 meters. Fortunately, this is 

much more precise than the 15 meters described as standard position accuracy by Dillon et al. 
(2019).6  The Garmin eTrex units actually report a unique measurement error any time a 
measurement is taken, however enumerators were instructed to wait for enough satellite reception to 
reach a high degree of position accuracy. Typically, a 3-meter error was acquired in less than two 
minutes: 94% of enumerators recorded a 3-meter margin error and 99% were within 9 meters.  
 
Therefore, we define a farmer as having accurately reported the area of the field if the SR 

measurement is within the bounds defined by (√𝐴𝑟𝑒𝑎𝐺𝑃𝑆  ± 3)
2
. Admittedly, this range implicitly 

suggests all fields are square, which is decidedly untrue. However, we believe no other definition 
could be much more sensible without also being more arbitrary. 
  

                                                 
5 There are no cases where the GPS measurement is exactly 1.25 ha. 
6 The eTrex specification sheet (https://www8.garmin.com/specs/eTrex_spec_sheet_0105.pdf) does say an error of less 
than 15 meters 95% of the time is typical. In practice, for us, this turned out to be a very conservative claim. 

https://www8.garmin.com/specs/eTrex_spec_sheet_0105.pdf
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3. RESULTS 

In this section, we will investigate each of the research questions outlined in the introduction in the 
order they were described.  
 

3.1 Accurate Field Measurement, CME or NCME? 

The first question we must address is whether SR field size measurement indeed suffers from 
measurement error and, if so, whether those errors are random or non-classical. Specifically, we 
want to know whether differences between the reported field area measurements and GPS measured 
area are systemically correlated with actual (GPS) field size.7 The first part of this question can be 
answered simply by comparing the sample means of the SR and GPS area measurements, as in the 
far right column of Table 1. On average, the objectively measured field size is 0.96 ha, or 0.07 ha 
greater than the average SR field size; this difference is statistically significant at a 1% level. 
Importantly, even if this difference were not significant, we might still find evidence of NCME, but 
this result alone is sufficient for us to conclude that there is at least CME.  
 
Table 1 also suggests that measurement errors are non-classical and, indeed, correlated with actual 
field size. For example, of the 1,167 fields smaller than 1.25 ha, the majority (598, or 51%) are 
reported by farmers as more hectares than they actually are. Conversely, on relatively larger fields 
two-thirds of respondents understate their field sizes. The tendency for the area of small fields to be 
overstated and large fields to be understated is consistent with nearly every example in the literature 
that examines this relationship (De Groote and Traoré 2005; Carletto Savastano, and Zezza 2013; 
Holden and Fisher 2013; Desiere and Jolliffe 2018; Abay et al. 2019; Dillon et al. 2019). 
 
To examine this relationship more explicitly, four estimated relationships are illustrated over a 
scatterplot of the full dataset in the left panel of Figure 1; the right panel shows a closeup of the 
highlighted region. All four estimates treat SR measurement as the dependent variable and GPS area 
as the explanatory variable. There is also a dashed line indicating perfect accuracy, or an intercept at 
0 and a slope of 1. 
 
Table 1. Evidence of Self-Reported Field Size Measurement Error on Zambian Maize Fields 

 Smaller fields (<1.25 GPS ha)  Larger fields (>1.25 GPS ha)    

Area Measure 

Under- 
estimate Accurate  

Over- 
estimate  

Under- 
estimate Accurate  

Over- 
estimate  Full Sample 

------------------------------------------Mean hectares by category---------------------------- 

Actual (GPS) 0.65  0.48  0.43  2.48  2.33  2.12  0.96  
Self-reported 0.40  0.48  0.82  1.45  2.32  2.96  0.89  
Difference 0.25 *** 0.00  -0.39 *** 1.03 *** 0.01  -0.84 *** 0.07 *** 

N 384  185  598  328  54  104  1,653  
Source: CSO/MAL/IAPRI (2012), LMF subsample.  

Notes: *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels respectively. Hypothesis testing is only 
conducted on difference values (highlighted). 

 

                                                 
7 Henceforth we will refer to actual, GPS-measured, and objectively measured results interchangeably. 
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The least flexible (simple linear) regression estimates the intercept at 0.28 (p<0.01) and a slope of 
just 0.63 (p<0.01). Moreover, the slope is statistically significantly different from 1 (p<0.01). In 
words, these results tell the same story as above: small field sizes are overestimated while larger fields 
are underestimated.  
 
The most flexible model presented in Figure 1 is the non-parametric LOWESS regression. These 
results do not lend themselves to straightforward hypothesis testing, but it is again clear that smaller 
field sizes tend to be slightly overstated while larger fields are underreported. Moreover, the 
magnitude of the (negative) measurement error seems to be increasing with field size amongst the 
overreported fields (similar to the linear regression results).  
 
Between this least and most flexible models are, of course, many alternative specifications. For 
example, two linear in parameters models would be the constant elasticity and quadratic models. The 
two we highlight here are threshold-based models. In short, these allow for the structural 
relationship in a linear regression to fundamentally shift at some threshold value. The threshold itself 
is estimated using a grid search procedure first introduced by Balke and Fomby (1997) using time 
series data, and later adapted for various cross-sectional and panel contexts (e.g., Marenya and 
Barrett 2009; Burke et al. 2019). Essentially, the procedure is to estimate the model with cutoff 
values at all feasible points and the optimal threshold is identified as that which best fits the data. 
Figure 1 illustrates 2 threshold models: one is non-linear in parameters and imposes the restriction 
that the regression line be continuous (the kinked linear model), and the other allows for the 
regression line to be discontinuous (the threshold linear model). Full results are in Appendix A to 
conserve space, but notably F-tests for both models reject the null hypothesis of no structural 
change at the 1% level. Interestingly, all four models tell essentially the same story to the extent that 
fitted lines are virtually indistinguishable for large segments of Figure 1. 
 
In summary of Table 1 and Figure 1, we find strong evidence to suggest: 1) there is measurement 
error in SR field size data among Zambian maize producers, and 2) it is NCME that seems to be 
strongly correlated with actual field size. 
 
Figure 1. Scatter Plot and Four Models Comparing Self-Reported Field Size to Actual Field 
Size 

 
Source: CSO/MAL/IAPRI (2012), LMF subsample and the authors’ calculations. Right panel is an enlargement of the 
highlighted area in the left panel. Vertical reference line is at 1.25 ha as measured using a Garmin eTrex unit. 
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Also, of note is the vertical reference line in Figure 1, which sits at 1.25 ha along the GPS-measured 
axis. Somewhat surprisingly, this is approximately the point at which 3 of the 4 presented fitted lines 
intersect the line of equality. In other words, below 1.25 objectively measured hectares, most models 
predict field sizes will be overreported on average, and vice versa on fields larger than 1.25 
objectively measured hectares. This is the reason 1.25 is used as the cutoff point at which we 
disaggregate the analysis in Table 1 and later tables. 
 

3.2 What Does Area Measurement Error Imply for our Understanding of Aggregate Land 
Use? 

One question of analytical importance is whether and how much reporting errors could be affecting 
the understanding of total land use. A common source that researchers turn to for these data is the 
Food and Agriculture Organization of the United Nations (FAO), which, in turn, often accumulates 
data from official sources. In the case of land use in Zambia, for example, FAO reports official data 
that are collected by the government. Since 2000, Zambia’s official data on annual land use has been 
based on Crop Forecast and Post-Harvest Surveys. In other words, much of the FAO data comes 
from SR farmer data that we have shown is subject to NCME and exhibits an overall tendency to 
understate field sizes. 
 
This sample is of the largest maize fields only, so it cannot be used to compute total area under 
cultivation for the entire country. However, it is a nationally representative sample of households, 
meaning that the difference between total area reported by farmers and total area measured by GPS 
as a proportion can be used to extrapolate how measurement error affects aggregate estimates of 
area under cultivation. In total, the GPS-based field measurements suggest the largest maize fields of 
smallholder farmers in Zambia represent 1,269,697 total hectares under cultivation. 
 
The same sample, using farmer-reported field sizes, suggests largest maize fields of smallholder 
farmers in Zambia represent 1,175,397 hectares in total. In other words, the area measured by GPS 
is 8% greater than the area reported by farmers, so the aggregate statistics that are based on farmer-
reported data systemically understate the amount of land that is being used (or overstate the amount 
of arable land that is still available). In terms of national total land use, an 8% error in aggregate 
statistics could mean official data represent 300,000 fewer hectares under cultivation of annual crops 
than are actually being used (FAOStat 2019; Figure 2). 
 

Figure 2. Land under Annual and Permanent Crops: Official Data and 8% Correction 

 
Sources: FAOStat and authors’ calculations. 
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3.3 What Does Field Size Measurement Error Imply for the Inverse Relationship 
Discussion? 

Evidence examining whether an IR between yield and field size appears in Zambian maize plots, and 
how that relationship is influenced by field measurement, is presented in Figure 3. The dark line in 
the foreground of the left panel is the non-parametric LOWESS regression of yield computed using 
the SR measurement on the SR values of field area. In other words, the left panel of Figure 3 shows 
what we would understand the relationship to be in a dataset lacking objective area measurements. 
In the background, the lighter lines are the results from 50 bootstrapped repetitions of the same 
regression using the same sample size that was selected randomly with replacement (these serve as 
an alternative to a confidence band that might be presented with results of a parametric regression). 
The right panel of Figure 3 is analogous, but values along both axes reflect the area measurements 
obtained using GPS units.  
 
Unlike with many prior SR-based data, the left panel does not reflect the presence of an inverse 
relationship. To the contrary, as farmer-reported area increases, the yield estimates based on SR data 
seem to increase. Evidenced in the bootstrapped results, the relationship on larger (as reported by 
farmers) fields is based on fewer observations, however, so the estimates on the right side of the left 
panel are notably less precise. 
 
If we shift focus to the right panel, instead, we find fairly strong evidence of an IR between yield and 
farm size when both are considered using the actual field size. Here too, the results on the right side 
of the graph panel are less precise, but the evidence that yields seem to decrease as field size 
increases is very apparent on areas smaller than 2 ha (which constitutes 85% of our sample). 
 

Figure 3. Non-parametric Relationship between Yield and Field Size: Self-Reported vs. 
GPS-Measurements 

 
RALS 2012, LMF subsample and the authors' calculations. Notes: Results are LOWESS (non-
parametric, bandwidth=0.8) regressions of yield on field size. Darker lines are the full-sample results 
(N=1,653), lighter lines are 50 bootstrapped repetitions where re-sampling N is equal to full sample 
N, chosen randomly, with replacement.
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In short, Figure 3 suggests that more objective measures of field size add to the strength of the IR 
evidence, rather than dismissing it as a data artifact. This is in contrast to Holden and Fisher (2013), 
Desiere and Jolliffe (2018), and Dillon et al. (2019), all of whom found the IR was weaker with 
objective measures compared to SR measures.8 We caution the reader, however, from over- 
emphasizing the importance of this discrepancy. There is no reason to suspect our data were 
collected in a way that was any more or less valid than those of other studies that reach the opposite 
conclusion with respect to the IR. Rather, as Abay et al. (2019) highlight, the direction of bias in the 
presence of non-classical measurement errors on both sides of the correlation equation is unclear. 
Indeed, Carletto, Savastano, and Zezza (2013) also found a stronger IR with objectively measured 
field sizes than SR measurements, and Bevis and Barrett (2019) do not find IR to be explained by 
area measurement errors. Together with other results in published literature, ours illustrate that the 
effect of NCME on IR estimates within a given dataset can differ substantively from its effect in 
another dataset. To us, the salient implication of this finding is that researchers would do well to 
pursue more reliable area measurements moving forward. We contend there is no singular answer to 
whether past evidence of an IR from studies using SR area data is more fact or artifact. 
 

3.4 Input Use on Misstated Size Fields 

The question of how mismeasured fields may be affecting actual input use has been largely 
overlooked in existing literature. In the context of mixed methods for measuring field sizes, only 
Dillon et al. (2019) give much attention to the implications of measurement error for input demand, 
but their focus is on the bias introduced by mismeasurement on estimates of the determinants of 
input demand. This is an important contribution, but our question—whether misunderstandings of 
field size on the farmer’s behalf actually lead to differences in use of inputs—is quite different.  
 
To investigate our question, we consider the distributions of actual and reported seed and fertilizer 
application rates presented in Table 2.9 Once again, we’ve disaggregated the sample into six 
categories according to whether the GPS-measured field size is smaller than 1.25 ha and, within field 
size categories, whether the farmer underreported field size, was accurate, or overreported field size.  
 
In addition to describing the data, the significance levels are indicated for hypothesis tests of 
whether application rates on under- and overreported fields differ from those accurately reported 
within each farm size group (as opposed to whether they differ from zero, as might be more 
commonly reported10). For example, the 64.6 kg/ha for the overreported fields in the first row of 
results is significantly different from the 27.7 kg/ha on accurately reported fields at the 1% level, 
whereas the 22.8 kg/ha on underreported fields is significantly different from the 27.7 kg/ha on 
accurately reported fields at the 5% level. Standard errors for these tests are not reported to 
conserve space but can be provided. 
 

                                                 
8 Dillon et al. (2019) employed crop cuts, so they did not rely on farmer-reported data for either the numerator or the 
denominator of yield calculations, which is an additional difference compared to ours and the other studies mentioned. 
9 Effectively all of the fertilizer used in Zambia is either urea (top dressing, NPK=46-0-0) or Compound D (basal, 
NPK=10-20-10) 
10 The mean application rates for the fields accurately described in the SR data are the baselines for hypothesis testing in 
other columns, which is why they (and the full sample means) are shaded and no significance levels are reported. 
Obviously, all observations used seed, and the results in the rows pertaining to basal and urea rates only include 
observations using those fertilizers, so naturally all of the means are significantly different from zero. 
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Table 2. The Effects of Field-Size Misestimation on Input Use and Yield  

 Smaller fields (<1.25 GPS ha) Larger fields (>1.25 GPS ha) 
Full 
Sample Application rates (kg/ha) 

Under 
reported a Accurate b 

Over 
reported a 

Under 
reported a Accurate b 

Over 
reported a 

Seeding  Actual (at GPS) 22.8** 27.7 64.6***
 15.3** 19.3 30.8*** 37.8 

 Reported 38.4*** 28.1 31.6 29.8*** 19.4 22.2 32.0 
         
Basal  Actual (at GPS) 124.7*** 175.8 310.5*** 88.3** 122.6 170.8*** 193.2 
fertilizer 

c Reported 204.3** 176.5 149.5*** 152.0 122.7 122.3 163.8 
         
Urea  Actual (at GPS) 120.7*** 169.1 299.2*** 88.0* 116.7 166.2*** 186.6 
fertilizer 

d Reported 198.2** 170.1 144.0*** 152.3* 116.9 118.4 159.8 

N= Full sample 383 185 595 328 54 104 1649 
 Basal users 203 117 367 237 40 85 1049 
 Urea users 214 122 372 239 42 86 1075 
Source: CSO/MAL/IAPRI (2012), LMF subsample.  

Notes: *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels respectively. a. Hypothesis tests are for 
whether application rates on under- and overreported fields differ from those accurately reported within the farm size 
group. b. Results in these columns are the baseline for hypothesis testing in other columns, which is why no significance 
levels are reported. Naturally, all are significantly different from zero. c. Means in these rows only include basal fertilizer 
users. d. Means in these rows only include urea users.   

 
On smaller fields, where the actual size is less than 1.25 ha, reported seed rates are similar between 
fields where area is accurately reported and those where area is overreported (28 and 32 kg/ha, 
respectively) and not significantly different from each other. These are both similar to the mean 
reported seed application rate for the full sample (32 kg/ha), which is over 50% greater than the 20 
kg/ha seed application rate recommended by the Zambia Agricultural Research Institute (ZARI). 
The recommended seed application rate is expected to produce 44,000 plants/ha (ZARI 2002). The 
reported seed rate on fields that farmers say are smaller than they actually are (the underreported 
fields) is significantly higher at 38 kg/ha. If farmers believe what they are reporting, this could seem 
sensible—the less land they believe they have, the more incentive they may have to increase plant 
population density to maximize output (even if that means exceeding the agronomically efficient 
seeding rate). As Holden and Fisher (2013) illustrated, food self-sufficiency goals can motivate 
intensification on smaller farms. 
 
Unlike reported seeding rates, though, actual seed rates follow an opposite trend. On accurately 
reported fields, by definition, the actual seed rate is essentially identical to the reported seed rate (28 
kg/ha). On fields where area is overreported, however, the actual seed rate is more than twice as 
high (65 kg/ha), and significantly different at the 1% level from actual rates on accurately reported 
fields. In other words, where farmers report their land is more hectares than it actually is, they tend 
to have dramatically exceeded recommended and even average seed rates. Conversely, on the smaller 
fields where the reported area is lower than the actual area, seed rates are lower on average (23 
kg/ha) compared to accurately reported fields, and that difference is significant at the 5% level. 
 
This pattern is very similar on larger fields (those greater than 1.25 ha). The reported seed rates on 
accurately and overreported fields are 19 and 22 kg/ha respectively, compared to 30 kg/ha on 
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underreported field sizes. The actual seed rates, however, are significantly lower (at 15 kg/ha) on 
underreported fields and significantly higher (at 30.8 hg/ha) on overreported fields. 
 
The pattern is also similar when we examine fertilizer use. (Note the rows describing fertilizer 
application rates in Table 2 only include the users of that type of fertilizer in the reported means.) 
We can say, for example, that on smaller fields those who use basal fertilizer and accurately describe 
their hectarage report applying 177 basal kg/ha. Those who understate the size of their fields report 
applying basal at a significantly higher rate (204 kg/ha), but actually apply at a lower rate (125 
kg/ha). Conversely, those who overstate their field size report basal application rates that are 
significantly lower (150 kg/ha) than the accurately reported fields, while their actual application rates 
are quite substantially (and statistically significantly) higher (311 kg/ha). The results for urea closely 
follow the same pattern. 
 
In summary, the trends evident in Table 2 are very clear. On the fields that farmers believe to be (or 
report to be) fewer hectares than they actually are, they report relatively intensive input use rates, but 
their actual input use rates are lower than average. On the fields that farmers report being more 
hectares than they actually are, reported input use rates are more similar to those on accurately 
reported fields, but in reality, they are applying fertilizer and seed significantly more intensively. 
 

3.5 Misstated Field Size Compared to Actual Yield 

The next question we ask is whether the differences we see between reported application rates and 
the actual application rates would be expected to make any meaningful difference with respect to the 
yields farmers might expect. To this end, we turn to a series of simulations in Table 3 below. These 
show: i) expected yields at the actual (as measured by GPS) seed and fertilizer application rates; ii) 
the difference in expected yields if fertilizer and seed rates had actually been what farmers reported 
they were; and iii) what the expected yields would have been if all seed and fertilizer inputs had 
actually been applied at the rates in which they were reported to have been applied. All of these 
simulations are again broken down according to whether the field in question is smaller or larger 
than 1.25 ha, and whether the farmer accurately reported hectarage or if they under- or overreported 
field size. In order to carry out these simulations, we rely on the estimates of yield and yield response 
to fertilizer from Burke et al. (2019), which are based on the same data and using GPS measures we 
use for this analysis.  
 
Specifically, we use the Model 1 results from that study, which include the level and square of the 
application rate for each input as well as controls for many other potential yield determinants such 
as soil organic matter, soil pH, the timing of basal applications.  
 
If we only observe the means of the full sample, it does not appear that self-reported or GPS-
measured application rates make much difference: the difference is only 56 kg/ha between the 
expected yields at actual application rates compared to farmer-reported rates. This, however, masks 
considerable variation between the overreporting and underreporting groups of farmers. Upon 
closer inspection, the results in Table 3 are very consistent with the results in Table 2. In general, if 
the farmers who underestimated field size had applied seed and fertilizer at the rates they reported, 
their yields would have been 39% (2,300/1,651) and 44% (2,192/1,522) higher on smaller and larger 
fields respectively. If the farmers believed they were applying inputs at the rates they reported, these 
results have important implications. In particular, based on the amount of inputs per hectare the 
farmers said they were using, they would likely have expected yields much higher than those 
ultimately realized.  
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Table 3. The Impact of Field-size Misestimation on Input Use and Yield  

 Smaller fields (<1.25 ha) Larger fields (>1.25ha) 
Full 

Sample  Under 

reported Accurate 

Over 

reported 

Under 

reported Accurate 

Over 

reported 

i) Expected yields at actual seed and fertilizer application rates (as measured by GPS) 

c: 

 1,651 2,228 2,906 1,522 2,064 2,725 2,209 

ii) Counter-factual difference in expected yield if   

c: 

Actual seed rate=reported seed rate  309.9 7.7 -469.8 308.5 2.5 -192.4 -38.4 

Actual basal rate=reported basal rate a 267.8 0.9 -336.9 237.4 2.0 -174.8 -14.4 

Actual urea rate=reported urea rate b 346.5 4.7 -443.3 325.1 0.8 -217.1 -14.7 

iii) Expected yields if all actual seed and fertilizer rates were at reported fertilizer rates 

c,d: 

 2,300 2,239 1,991 2,192 2,068 2,232 2,153 

Source: CSO/MAL/IAPRI (2012), LMF subsample.  

Notes: a – Only includes basal fertilizer users. b – Only includes urea users. c – All simulations and expected values are 
computed using parameters reported in Burke et al. (2019), which estimate yield and response to fertilizer and seed using the 
same dataset as the present study. d – The total difference between expectations at actual and counter-factual application 
rates do not equate to the sum of the differences from the three partially counter-factual simulations because the individual 
differences examining fertilizer effects excludes those who do not apply fertilizer (the total difference includes all 
observations).   

 

The converse appears to be the case for the farmers that overstated the hectarage of their fields: 
expected yields at reported input application rates on smaller fields are just 67% of the expected 
yield at the actual (higher) rates. On larger fields, the difference is 80%. 
 
There are two more important observations about Table 3. First, for all of the groups that have mis-
stated their field sizes, it appears as though differences between expected and actual seed use are 
more important than differences in either basal or urea use (see section ii of Table 3). Moreover, the 
figures in the rows describing effects of basal and urea differences exclude the fact that many 
farmers use no fertilizer at all (as was the case, for example, on 36% of fields in Table 2).  
 
So, the relative importance of seed rates is greater than it appears to be in these results. The final 
point from Table 3 is regarding the evidence of truthfulness amongst respondents. 
 

3.6 Telling Lies or Making Honest Mistakes? 

The expected yields based on the input use rates that farmers report in Table 3 are all fairly similar, 
ranging from 1,991 kg/ha on the overreported smaller fields to 2,300 on the underreported smaller 
fields. By contrast, yields that should have been expected based on actual application rates vary 
considerably. Moreover, the correct expected yields are lowest on the underreported fields (1,651 
and 1,522 kg/ha on smaller and larger fields respectively), and highest on the overreported fields 
(2,906 and 2,725 kg/ha). These differences are more drastic than the expectations at reported input 
rates and, we also believe, evidence that farmers are not intentionally deceiving data collectors. We 
rather believe the evidence is more consistent with respondents being honest and incorrect when 
reporting the number of hectares they are farming. 
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It is important to ask whether the discrepancies we see between reported and measured field sizes 
reflect dishonesty from respondents or just a misunderstanding of hectarage, because the answer 
largely determines the scope of the implications of the present and similar studies. If respondents are 
being dishonest, the implications essentially rest in the importance of collecting more reliable data 
going forward. If, on the other hand, respondents are honest but incorrect, the implications extend 
further to identifying a need to better educate farmers.  
 
Either case is plausible. There may be incentives for a farmer knowledgeable about hectarage to lie 
in either direction depending on to whom they believe they are giving information (a subsidy 
provider versus a tax assessor, for example). It is also quite feasible that a farmer with a very sound 
understanding of their field size in a real sense does not have a concrete understanding of the area in 
terms of hectares (or acres or other units that are also collected and converted to hectares ex post).  
The question of honesty is, by its nature, a difficult one to address empirically. Admittedly, it is 
impossible to say definitively whether farmers are typically lying to enumerators or are making 
honest mistakes when they misreport their farm sizes, but we believe the data do offer some clues. 
 
First, counterfactual expected yields based on reported applications—that is, the expected yields if 
farmers really used inputs at the rates they report using them—are similar across groups. Predicted 
yields at the actual application rates, on the other hand, vary more substantially depending on field 
size and reporting error. These results are more consistent with farmers making honest reporting 
errors than intentionally deceiving enumerators. In short, this argument is reduced to the question of 
whether farmers are likely all aiming for a similar yield (i.e., they believed the reported rates 
themselves), or if some farmers are aiming for drastically different yields (i.e., they knew the actual 
application rates and lied), and that those differences are correlated with whether or not they 
eventually speak to an enumerator. On its face, the former possibility seems, to us, more likely, but 
the real linchpin is in the last part of the latter case. Given that farmers did not know whether they 
would eventually be speaking to an enumerator, the case where farmers’ tendency to lie is highly 
correlated with intended yields seems highly unlikely. 
 
A parallel argument could be made about the relative similarity in reported input use compared to 
the actual input rates. We look at this more explicitly in Table 4, showing results from linear 
regressions of total seed and fertilizer use (amongst those who use it) on the actual size of the field. 
We include as additional regressors the difference in the number of hectares reported and the actual 
size of the field, with separate variables for the absolute values of the overestimates and  
underestimates. To be clear, these are not input demand equations that would need to include a 
battery of other explanatory variables, such as prices of inputs, expected prices of outputs, 
transaction costs, and so on. The important roles of these variables are investigated at length 
elsewhere in the literature and are well beyond our scope. Rather, Table 4 allows us to simply 
address a straightforward question: given the actual size of the field, do farmers who incorrectly 
describe their fields as larger (or smaller) use more (or fewer) inputs? If they do—if the coefficients 
on the overreported and underreported hectares are significantly different from zero—it suggests 
they actually believe the incorrect area measurements they have told to enumerators. 
 
The evidence leans heavily towards the conclusion that farmers are making honest mistakes. Take, 
for example, the use of seed. In addition to the intercept term, on fields that are accurately reported 
(i.e., where the number of hectares over- or underreported is nil), the mean seed use rate would be 
19.5 kg/ha. This is essentially identical to the 20 kg/ha seed rate recommended to farmers (ZARI 
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2002). Moreover, when fields are misreported by farmers, the actual application rates are highly 
consistent with the combination of recommendations and the area the farmer seems to think they 
are tending. For every hectare below the actual size of the field that the farmer says they are 
planting, they use 17.9 kg less seed; for every hectare over the actual size they report, farmers use an 
additional 19.3 kg of seed. Both of these results are again close to the 20 kg/ha recommendation. 
The results for basal and urea fertilizer use tell a similar story: although actual and perceived 
application rates are lower than recommended, they are more closely proportional to the reported 
field size than the actual field size. In short, when farmers misreport their field sizes, the quantities 
of inputs they use suggest they believe what they report to enumerators to be accurate. 
 
Table 4. Do Farmers Who Over (Under) Report Field Size Use More (Fewer) Inputs? 

 Seed Basal Urea 

Actual field size (ha, measured by GPS) 19.48*** 102.62*** 103.13*** 
 (1.78) (9.99) (9.89) 
No. of hectares below actual size reported by farmer -17.91*** -97.02*** -95.23*** 
 (2.54) (14.77) (14.72) 
No. of hectares above actual size reported by farmer 19.28*** 63.08*** 62.32*** 
 (1.66) (12.38) (12.21) 
Constant 5.47*** 39.13*** 34.88*** 
 (1.19) (6.30) (6.14) 

Observations 1,653 1,052 1,078 
R-squared 0.436 0.439 0.447 
Source: CSO/MAL/IAPRI (2012), LMF subsample.  

Notes: *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively. Robust standard errors 
in parentheses.  

 
  

3.7 Extension, Education and Non-classical Measurement Errors 

If farmers are truthful in their responses to enumerators, the implications of our finding that they 
are very often incorrect about their field size is problematic, not just for data analysts, but for 
farmers too. We have seen that misperceptions of field size can lead to fertilizer and seed application 
rates that are quite different from those the farmers seem to believe they are using. Again, the major 
issue is that farmers are often given advice on how many seeds or kg of fertilizer they should be 
using in per hectare terms. Earlier, for example, we highlighted some of these recommendations that 
come from the extension arm of ZARI, which is in turn part of MAL: 20 kg/ha of seed and 200 
kg/ha each of basal and urea fertilizers.  
 
Having established that field size errors are prevalent and important, we now turn to the question of 
which farmers are more likely to misunderstand the hectarage of their fields. In particular we will 
examine the relevance of access to extension and of formal education levels. For extension, we are 
particularly interested in whether farmers have had exposure to the concepts of conservation 
farming (CF), which has gained much attention in recent years (e.g., Haggblade and Tembo 2003; 
Thierfelder and Wall 2009; Haggblade, Kabwe and Plerhoples 2011; Umar et al. 2011). The tenets of 
CF emphasize minimum tillage, crop residue retention, and crop rotation—these are typically the 
focus of CF studies. Another aspect of CF, however, is careful monitoring of input use, which 
essentially as a prerequisite, includes knowing the area of one’s field (Haggblade and Tembo 2003). 
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So, we might expect those with exposure to CF information to know the area of their fields more 
accurately.11 Similarly, we might expect those with a higher degree of formal education to better 
understand area measurements in the units used to disseminate advice (and collect data).  
There are several ways a farmer might have become exposed to CF, including through contact with 
ZARI/MAL extension officers. The Conservation Farming Unit (CFU)12 is a non-governmental 
organization sponsored by UKAID, which teaches precise spacing of rows or planting basins, 
making farmers more likely to know their actual field sizes. Farmers also respond that other NGOs 
sometimes teach CF. Private companies may teach CF techniques to the farmers from whom they 
purchase goods, as is common in cotton contract farming. Finally, some farmers may be told about 
CF practices from their peers.  
 
Table 5 presents results from a regression-based examination of the differences in NCME, 
disaggregating the full sample according to their primary source of information on CF. Since the 
several specifications represented in Figure 1 show qualitatively similar results, we focus here on just 
one simple linear regression of reported hectares on GPS measured hectares for each group. There 
are only two parameters in each regression; if farmers are accurate on average, the intercept would 
be zero and the coefficient on the GPS-measured plot size (the slope parameter) would be one. We 
also present post-estimation tests at the bottom of Table 5 for each group of the null hypothesis that 
the slope parameter is one (versus the alternative that it is not). So a good result, i.e., one indicating 
farmers are accurate on average, would be a failure to reject the null hypothesis for the intercept in 
the main results coupled with a failure to reject the null in the post-estimation analysis. As a visual 
aid for interpreting these results, Figure 4 shows all linear relationships, vis-à-vis each other, and a 
dashed line indicating perfect one-to-one accuracy.13 
 
The first group, column (i), are farmers who responded they have not received any information on 
CF. Perhaps unsurprisingly, these farmers are the least accurate on average, with an intercept that is 
0.33 (p<0.01) and a slope estimate that is 0.49 less than, and statistically significantly different from 
unity (p<0.01). Results are only marginally improved for farmers that were exposed to the tenets of 
CF practices by another farmer (column (v) in Table 5). As can be seen in Figure 4, these two groups 
perform essentially the same in most contexts that are meaningful to smallholders (e.g., where actual 
field sizes are below 2 ha, which covers 85% of our sample; also see Figure 1). It is worth noting 
that, together, those who have not heard of CF and those who learned from another farmer 
comprise the majority (52%) of our sample.  
 
Conversely, the 137 farmers responding that they learned CF from a private firm are the most 
accurate. Amongst this group the estimated intercept term is not significantly different from zero 
and the slope parameter is just 0.11 less than and not significantly different from unity (column (iii) 
of Table 5). 

                                                 
11 Other than CF, no specific variety of extension advice we know of emphasizes area measurement, though certainly it 
is often taught as part of some general extension services. Treating “access the extension” more generally as a categorical 
variable is not as revealing as the results in Table 5. 
12 https://conservationagriculture.org/ 
13 All of the separate regressions in Table 5 can be estimated simultaneously in one regression that nests models in 
columns (i) – (vi), which is reported in Appendix B. Those results, using no training as the base category, show that none 
of the intercepts are significantly different from the base estimate of 0.325; the slope estimates for GPS-recorded ha in 
the ZARI/MAL, private firm, and CFU training groups are significantly different from the base estimate of 0.515 
(p<0.06, p<0.02 and p<0.01 respectively); the slope estimates for GPS-recorded ha in the training groups for another 
farmer and “other/NGO” are not significantly different from the base estimate. 
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Moreover, these farmers’ estimates appear to be relatively precise as well as accurate; 70% of the 
variation in reported field size is explained by the actual farm size. This compares to just 38% of the 
variation in reported farm size explained for the group that has not learned of CF and 52% for the 
sample overall. The small group of 82 farmers in our sample that were trained by the CFU  
performed similarly well. Although the intercept estimate for this group is statistically significantly 
different from zero, the magnitude is relatively small (0.23; p<0.10) and the slope estimate is not 
significantly different from unity. In the depiction in Figure 4, the regression lines for these two 
groups are virtually indistinguishable. 
 

Table 5. Non-classical Field Measurement Error in the Context of Access to CF Extension 

Reported ha= 

No CF ZARI/ 
MAL 

Private 
firm 

CFU Another 
farmer 

Other/ 
NGO 

Full 
sample 

(i) (ii) (iii) (iv) (v) (vi) (vii) 

GPS ha 0.515*** 0.692*** 0.887*** 0.872*** 0.550*** 0.665*** 0.633*** 
 (0.075) (0.054) (0.134) (0.093) (0.171) (0.138) (0.053) 
Constant 0.325*** 0.227*** 0.118 0.228* 0.367** 0.352** 0.284*** 
 (0.049) (0.050) (0.130) (0.134) (0.156) (0.137) (0.043) 

Observations 693 472 137 82 171 96 1,653 
R-squared 0.384 0.579 0.702 0.638 0.514 0.542 0.515 

Post-estimation test        
(GPS ha 
coef.=1) -0.485*** -0.308*** -0.113 -0.128 -0.450** -0.335*** -0.367*** 
 (0.075) (0.054) (0.134) (0.093) (0.171) (0.138) (0.053) 
Source: CSO/MAL/IAPRI (2012), LMF subsample.  

Notes: *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels respectively. Robust standard errors in 
parentheses.  

 

  



 

20 

 

 

Figure 4. Reporting Error by Conservation Farming Knowledge Source (Results from Table 5) 

 
Source: CSO/MAL/IAPRI (2012), LMF subsample. 

Note: Lines are listed in the legend in the order that they appear (top to bottom) on the far-right side of the figure 

 

Table 6. Non-classical Field Measurement Error in the Context of Access to Formal Education 

Reported ha= 

No school 1-7 yrs 8-12 yrs College/ 
certificate 

Full sample 

(i) (ii) (iii) (iv) (v) 

GPS ha 0.285*** 0.682*** 0.617*** 0.786*** 0.633*** 
 (0.067) (0.076) (0.098) (0.063) (0.053) 
Constant 0.442*** 0.248*** 0.353*** 0.121*** 0.284*** 
 (0.064) (0.060) (0.083) (0.044) (0.043) 

Observations 171 903 490 89 1,653 
R-squared 0.215 0.562 0.494 0.704 0.515 

Post-estimation test      
(Coefficient–1) = -0.715*** -0.318*** -0.383*** -0.214*** -0.367*** 
 (0.067) (0.076) (0.098) (0.063) (0.053) 
Source: CSO/MAL/IAPRI (2012), LMF subsample.  

Notes: *, ** and *** indicate statistical significance at the 10%, 5% and 1% levels respectively. Robust standard errors in 
parentheses. The “post-estimation test” is the null hypothesis that farmer-reported field size estimates are correct vs. the 
alternative that they are incorrect. 

 
Table 6 is organized similarly to Table 5, therefore, interpretation can be carried out in much the 
same way.14 Here, though, the sample is disaggregated according to the highest level of formal 
                                                 
14 Estimates of a nesting model for columns (i) – (iv) are reported in Appendix C using no education as the base category; 
the slope estimates for GPS-recorded ha in each education group is significantly different from the base estimate of 
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education obtained by the head of the household responsible for managing each field. This is meant 
to examine whether more educated farmers (who may be more literate in the units of measurement 
used to record data) are more accurate. Although all of the intercept terms in Table 6 are 
significantly different from zero, and all of the slope terms are significantly different from unity, 
there is, indeed, evidence that education makes a difference. 
 
The farmers with 1-7 years of formal education perform similarly to those with 8-12 years of 
education, and both of these groups are on par with the overall sample. If there is any difference 
between these two groups, the farmers with 1-7 years of education appear to be slightly more 
accurate, on average. However, amongst the 10% of respondents, whose household heads have no 
formal education; we see the slope parameter is actually closer to nil than it is to unity. Roughly, the 
opposite is true for the 5% of the respondents whose household heads achieved post-secondary 
(college or certificate) education. In short, these results point to a fairly dramatic, albeit unsurprising, 
relationship between literacy and the ability to accurately relate the size of one’s field in standard 
units. As the uneducated are disproportionately also poor, this relationship provides a telling 
example of the importance of education with respect to welfare.  

                                                 

0.285 (p<0.01 in each case). We also test and fail to reject the null hypothesis that slope coefficients are the same for 
those with college/certificate, 1-7 years, and 8-12 years of education.  
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4. DISCUSSION AND CONCLUSION 
 
While data has long relied on farmers to provide descriptions of themselves or their land, there is 
mounting evidence that their ability to do so is systemically inaccurate with regards to field areas. 
This has many problematic implications. Several studies have focused on how area measurement 
errors affect the ability to describe farmers. This study contributed to the growing evidence, showing 
that smaller field sizes tend to be overstated, while larger fields tend to be described as smaller than 
they actually are in this sample of Zambian maize fields.  
 
Interestingly, we found that using more objective measurements actually strengthened the evidence 
of the often-called inverse relationship between field sizes and yields. This finding is in contrast to 
most other analyses of data employing mixed methods for measuring fields. Our findings do not 
rule out the possibility of self-reported data as a potential source for IR artifacts in other data and 
country contexts; rather, our results underscore that the magnitude and direction of bias and its 
implications for the IR can differ from one dataset to another. The important conclusion, we 
believe, is that quality agricultural area data collection should be prioritized by researchers and those 
funding research. This is likely to become increasingly feasible as the cost and measurement errors 
of tools like handheld GPS equipment inevitably decline. Also, holding confidence in our results 
constant, less measurement error would mean we could rely on smaller samples, which would reduce 
costs. On the other hand, the cost of measuring all fields will not be the same – on farms where 
some fields are very far from home, for example, there is a time-cost for the enumerator that cannot 
be ignored. There is a need for research on weighing the costs and benefits of minimizing field area 
measurements that is not possible with these data. 
 
Nevertheless, improved data collection will be useful for better understanding, for example, the 
relationship between field sizes and yield at the farm level, but also for generating aggregate 
statistics. Our results suggest that past figures on national land use may have underestimated crop 
land by 8%, or 300,000 hectares in recent years, because of the reliance on farmer-reported data.  
 
The major contribution of this study, however, has to do with our findings pertaining to how 
misunderstandings of measurement affect input use. It bears repeating what our and several other 
datasets have evidenced: farmers in developing countries are often not literate in the units of 
measurement used to advise them. The evidence we presented here suggests that farmers themselves 
believe the area figures they report to enumerators—their input use is more closely aligned with the 
reported field sizes than with actual field sizes. This is problematic, because the advice they receive is 
often based on area units (e.g., plant 20 kg of seed per hectare; use 200 kg of urea per hectare).  
 
The finding also begs the question, how do farmers come up with the figures they seem to believe 
are accurate when reporting to enumerators? As a follow up to this analysis we visited several 
farmers and extension agents (both with the MAL and CFU) to get a sense.15 The most common 

                                                 
15 Interviews were conducted with research and extension officers from the Zambian Agricultural Research Institute 
(ZARI), which is part of the Ministry of Agriculture, and the Conservation Farming Unit (CFU) to gain a better 
understanding on the information farmers receive regarding field size measurements. Interviewees were invited to share 
their knowledge on topics including the methods extension officers train farmers to determine field sizes, the most 
common methods farmers actually use, and the agents’ perceptions of how accurate farmers are. A small group of seven 
farmers (four female) were also interviewed. It is important to acknowledge these farmers were chosen based on their 
availability and are, thus, not a random sample. While their sampling cannot be considered statistically representative, we 
value their insights into the general knowledge of how fields are measured. 
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way farmers are taught, and the most common method employed when fields are 4-sided, is either 
the step or pacing method. The step method teaches that 10 lengths of a person’s anatomical foot is 
equal to one meter, whereas the pacing method teaches a meter is one pace. Both of these methods 
have the obvious and acknowledged flaw that not everyone’s feet and paces are the same length. 
Another flaw is that many fields are not 4-sided, and many do not even have straight sides. In the 
case of irregularly shaped fields, farmers are trained to estimate their field size according to how 
much seed they use—that is, for a maize field, wherever they plant 20 kg of seed, they should 
assume one hectare. For maize fields, it is thought the seed method is the most commonly used way 
field size is estimated. The flaw, of course, is that if seed application rates are used to measure field 
size, field size is not a reliable way to recommend seed application rates—any field size estimation 
error becomes self-reinforcing. The seed method might be acceptable if the only objective of 
recommendations is to ensure, say, fertilizer-to-seed ratios, but seed-to-area and fertilizer-to-area 
ratios may be subject to agronomically important mistakes, as our data suggest they are.  
 
Therefore, a major implication of this study is that farmers would be well served by better training 
on how to measure field areas. For example, if seed and row spacing is taught to be done with a 
higher degree of precision, the seed method might prove more reliable. Training in this area would 
need to take into account the fact that many farmers do not read and write; distributing ropes with 
knots tied at 90-centimeter intervals may be more useful (and less expensive), for example, than 
distributing measuring tapes. One interviewee recalled a failed effort to distribute GPS units, which 
most farmers struggled to put to meaningful use. It may also be helpful just to emphasize the value 
of accurately knowing one’s field size. Extension agencies tell us that knowing field size is a low 
priority with most focus instead placed on saving money to purchase fertilizer.  
 
Finally, there is the issue of extension efforts overall receiving a low priority in the agricultural 
budget—just 1% of the agricultural budget on average from 2010-2019, for example (ZMF, various 
years). Our interviews with officials reveal that every government camp officer is meant to be 
responsible for educating up to 4,000 farmers—significantly more than their CFU counterparts—
and the actual number in their areas can be much higher. Moreover, they are usually ill-equipped to 
travel to farmers in remote areas, or to bring farmers to them. Demonstration plots could be a 
useful mechanism or venue to incorporate explicit training on accurate field size measurement, but 
again funding is seldom allocated for them. One earlier study found, based on estimates developed 
in consultations with MAL, that maintaining a demonstration plot in every extension camp in 
Zambia would cost less than 6% of the annual budget allocation to the fertilizer subsidy program 
(Burke, Jayne, and Black 2017).  
 
In short, we believe this study emphasizes how inaccurate knowledge of field size, at least in terms 
of the units of measurement that are used to communicate recommendations, is an important 
disconnect between farmers and the advice they receive. The obvious potential downside is that the 
yields farmers realize will be inconsistent with what they were told to expect. This makes it more 
difficult to plan ahead and jeopardizes fragile incomes and food security but has the added 
disadvantage of lowering the perceived credibility of extension agents and information. Instead, 
farmers are often left to rely on their own practical knowledge and experimentation, which is of 
enormous value, but which would be better if it were complemented with the knowledge of 
collective experience and scientific research. Strengthening extension efforts to improve farmer 
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understanding of hectarage seems important and may be a cost-effective way to improve 
productivity. 
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APPENDIX A: FULL RESULTS FOR FIGURE 1 NOT PRESENTED IN THE MAIN 
BODY 

Threshold linear model: 
 

. t1search ha_p ha_G, thold(ha_G) shift(ha_G) gen 

Optimal Threshold 

   Threshold: .41100001 

 

F test for significant sample split: 

F-stat =6.9688453[1651, 1649]; P[F-stat>0]=.0009687 

 

Regression results 

 

      Source |       SS           df       MS      Number of obs   =     1,653 

-------------+----------------------------------   F(3, 1649)      =    603.42 

       Model |   1336.4873         3  445.495765   Prob > F        =    0.0000 

    Residual |  1217.42945     1,649  .738283473   R-squared       =    0.5233 

-------------+----------------------------------   Adj R-squared   =    0.5224 

       Total |  2553.91674     1,652  1.54595444   Root MSE        =    .85923 

 

------------------------------------------------------------------------------ 

    ha_plant |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      ha_GPS |   .7257247   .3869153     1.88   0.061    -.0331724    1.484622 

      _00dum |    .210399   .1081659     1.95   0.052     -.001758     .422556 

  _00dha_GPS |  -.0663101   .3873436    -0.17   0.864    -.8260473    .6934271 

       _cons |   .2200335   .1015124     2.17   0.030     .0209268    .4191402 

------------------------------------------------------------------------------  
 

Kinked linear model: 

 
. skink ha_p ha_G, plot predict(kinked) 

 

Estimates the non-linear model: 

`lhs' = {b0} + {b2}*-`i'*_00dum + {b1}*`rhs' + {b2}*`rhs'*_00dum) 

Optimal Threshold 

   Threshold: .6376 

 

F test for significant sample split: 

F-stat =12.011893[1651, 1650]; P[F-stat>0]=.00054216 

 

Regression results 

(obs = 1,653) 

 

Iteration 0:  residual SS =  1218.846 

Iteration 1:  residual SS =  1218.846 

 

 

      Source |      SS            df       MS 

-------------+----------------------------------    Number of obs =      1,653 

       Model |  1335.0705          2  667.535226    R-squared     =     0.5228 

    Residual |  1218.8463       1650  .738694722    Adj R-squared =     0.5222 

-------------+----------------------------------    Root MSE      =   .8594735 

       Total |  2553.9167       1652  1.54595444    Res. dev.     =   4187.363 

 

------------------------------------------------------------------------------ 

    ha_plant |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         /b0 |   .1431724   .0631947     2.27   0.024     .0192221    .2671226 

         /b2 |  -.4620562   .1333181    -3.47   0.001    -.7235466   -.2005657 

         /b1 |   1.119326   .1249809     8.96   0.000     .8741878    1.364464 

------------------------------------------------------------------------------ 

  Parameter b0 taken as constant term in model & ANOVA table 
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APPENDIX B: RESULTS FROM MODEL NESTING COLUMNS (I)-(VI) OF TABLE 5 

Linear regression                               Number of obs     =      1,653 

                                                F(11, 1641)       =      39.37 

                                                Prob > F          =     0.0000 

                                                R-squared         =     0.5405 

                                                Root MSE          =     .67504 

---------------------------------------------------------------------------------------- 

                       |               Robust 

    Hectares planted = |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-----------------------+---------------------------------------------------------------- 

          CF training  | 

                  MAL  |   -.097944   .0704934    -1.39   0.165    -.2362104    .0403225 

         Private firm  |  -.2068071    .138289    -1.50   0.135    -.4780485    .0644344 

             ZNFU/CFU  |  -.0966368    .141497    -0.68   0.495    -.3741705    .1808968 

         Other farmer  |   .0418685   .1635216     0.26   0.798    -.2788646    .3626016 

            Other/NGO  |    .009673   .1447418     0.07   0.947    -.2742251    .2935711 

                       | 

                ha_GPS |   .5147806   .0751944     6.85   0.000     .3672936    .6622676 

            ha_GPS*MAL |    .177012   .0926104     1.91   0.056    -.0046351    .3586591 

   ha_GPS*Private firm |   .3723018   .1532741     2.43   0.015     .0716683    .6729354 

       ha_GPS*ZNFU/CFU |   .3574708   .1193166     3.00   0.003     .1234419    .5914998 

   ha_GPS*Other farmer |   .0349714   .1863472     0.19   0.851    -.3305319    .4004747 

      ha_GPS*Other/NGO |   .1508963   .1566471     0.96   0.336     -.156353    .4581457 

                 _cons |    .324881   .0491881     6.60   0.000     .2284028    .4213591 

----------------------------------------------------------------------------------------  

 

APPENDIX C: RESULTS FROM MODEL NESTING COLUMNS (I)-(IV) OF TABLE 6 

Linear regression                               Number of obs     =      1,653 

                                                F(7, 1645)        =      57.79 

                                                Prob > F          =     0.0000 

                                                R-squared         =     0.5352 

                                                Root MSE          =     .67813 

 

--------------------------------------------------------------------------------------------- 

                               |               Robust 

            Hectares planted = |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------------------+---------------------------------------------------------------- 

                          educ | 

           Standard (1-7 yrs)  |  -.1939405   .0879339    -2.21   0.028    -.3664147   -.0214662 

              Form (8-12 yrs)  |  -.0891461   .1048529    -0.85   0.395    -.2948054    .1165132 

College/Certificate (>12 yrs)  |  -.3214143   .0772603    -4.16   0.000    -.4729532   -.1698754 

                               | 

                        ha_GPS |    .285434    .066568     4.29   0.000      .154867     .416001 

     ha_GPS*Standard (1-7 yrs) |   .3969493   .1011758     3.92   0.000     .1985024    .5953962 

        ha_GPS*Form (8-12 yrs) |   .3313848   .1182604     2.80   0.005     .0994281    .5633415 

    ha_GPS*College/certificate |   .5006625   .0914271     5.48   0.000     .3213369    .6799882 

                         _cons |   .4422658   .0640054     6.91   0.000     .3167251    .5678065 

--------------------------------------------------------------------------------------------- 
**Note: a test of the null hypothesis that the slope parameter on ha_GPS for those with 1-7 years education is the same 
for those with 8-12 years education yields the test statistic 0.066, se=0.124, p>0.60). We fail to reject the hypothesis that 
there is no difference. 
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APPENDIX D: OTHER FACTORS CONSIDERED 

Gender of main decision maker 
 

Figure A 1. Gender and Accuracy of Field Size Reporting 

 

 

Source: RALS (2012), LMF subsample and the authors’ calculations.  
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Remoteness 
 
Initial look at data does not suggest any clear correlations between errors (positive or negative) with 
things like distance to market, distance to town, etc. Some results below:  
 
Overestimated field size (hectares over=ha_over) regression on kilometers to market (mrktkm): 

. reg ha_o mrktkm if ha_o 

 

      Source |       SS           df       MS      Number of obs   =       754 

-------------+----------------------------------   F(1, 752)       =      0.33 

       Model |  .191417874         1  .191417874   Prob > F        =    0.5629 

    Residual |  429.728702       752  .571447742   R-squared       =    0.0004 

-------------+----------------------------------   Adj R-squared   =   -0.0009 

       Total |   429.92012       753  .570943054   Root MSE        =    .75594 

 

------------------------------------------------------------------------------ 

     ha_over |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      mrktkm |   .0005499   .0009502     0.58   0.563    -.0013154    .0024152 

       _cons |   .4984501   .0363162    13.73   0.000      .427157    .5697432 

------------------------------------------------------------------------------ 

 

Underestimated field size (hectares under=ha_under) regression on kilometers to market (mrktkm): 

. reg ha_u mrktkm if ha_u 

 

      Source |       SS           df       MS      Number of obs   =       810 

-------------+----------------------------------   F(1, 808)       =      0.29 

       Model |  .197870993         1  .197870993   Prob > F        =    0.5934 

    Residual |  560.348871       808  .693501078   R-squared       =    0.0004 

-------------+----------------------------------   Adj R-squared   =   -0.0009 

       Total |  560.546742       809  .692888433   Root MSE        =    .83277 

 

------------------------------------------------------------------------------ 

    ha_under |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      mrktkm |  -.0005237   .0009805    -0.53   0.593    -.0024483    .0014008 

       _cons |   .5315086   .0388597    13.68   0.000     .4552308    .6077865 

------------------------------------------------------------------------------ 

 

Underestimated field size (hectares under=ha_under) regression on kilometers to town (townkm): 

. reg ha_u townkm if ha_u 

 

      Source |       SS           df       MS      Number of obs   =       817 

-------------+----------------------------------   F(1, 815)       =      0.04 

       Model |   .02811381         1   .02811381   Prob > F        =    0.8407 

    Residual |  566.989957       815  .695693199   R-squared       =    0.0000 

-------------+----------------------------------   Adj R-squared   =   -0.0012 

       Total |  567.018071       816  .694875087   Root MSE        =    .83408 

 

------------------------------------------------------------------------------ 

    ha_under |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      townkm |  -.0001783   .0008871    -0.20   0.841    -.0019196     .001563 

       _cons |   .5273743   .0457785    11.52   0.000     .4375167     .617232 

------------------------------------------------------------------------------ 

 

Overestimated field size (hectares over=ha_over) regression on kilometers to town (townkm): 

. reg ha_o townkm if ha_o 

 

      Source |       SS           df       MS      Number of obs   =       761 

-------------+----------------------------------   F(1, 759)       =      2.19 

       Model |  1.13825016         1  1.13825016   Prob > F        =    0.1394 

    Residual |  394.690694       759   .52001409   R-squared       =    0.0029 

-------------+----------------------------------   Adj R-squared   =    0.0016 

       Total |  395.828945       760  .520827559   Root MSE        =    .72112 

 

------------------------------------------------------------------------------ 

     ha_over |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      townkm |   .0012092   .0008173     1.48   0.139    -.0003953    .0028137 

       _cons |   .4552799   .0413496    11.01   0.000     .3741067    .5364531 

------------------------------------------------------------------------------ 
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Geographic Correlation 
 

One of the issues that may be worth looking at is spatial correlation in area measurement error. To 

examine this, we compute the log of the ratio of the self-reported area (areaSR) to GPS-measured 

area (areaGPS), which, for small errors, is analogous to a percent measurement error in areaSR. This 

is preferred to difference in absolute measurement because the mean of absolute measures could 

give disproportionate weight to larger fields. A straight percentage difference would give equal 

weight to large and small areas but is susceptible to influential outliers. The log of the ratio (or, 

equivalently, the difference in logs) circumvents both these pitfalls. 

A regression-based comparison (next page) shows provincial fixed effects explain less than 1% of 

the variation in ln(areaSR/areaGPS), and none of the differences between provinces are statistically 

significant. District level fixed effects, on the other hand, explain about 10% of the data variation, 

and several districts stand out as being more or less likely to show farmers underestimating or 

overestimating field size. So, while there does appear to be some spatial correlation, it is at the sub-

agro zone level. This is also reflected in the figure below, which is a nationwide map interpolating 

field measurement errors (with a map of agro-ecological zones inset). Interpolation pixels are 0.019 

decimal degree squares, or roughly 4.5 square kilometers. Interpolated values are computed with a 

distance coefficient of 0.5 (that is, each pixel is the weighted mean of all observed values, where the 

weight is the inverse of the square root of the distance between the pixel and the observation). 

 

Figure A 2.  Geographic Interpolation of Percent Measurement Errors in Self-Reported 
Field Size Measurement (Agro-ecological Zones Inset) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: CSO/MAL/IAPRI (2012): Interpolation method described in body of text.
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